pandas module ################# Introducing Pandas Objects ========================== Pandas objects can be thought of as enhanced versions of NumPy structured arrays in which the rows and columns are identified with labels rather than simple integer indices. Let’s introduce these three fundamental Pandas data structures: the ``Series``, ``DataFrame``, and ``Index``. .. code:: ipython3 import numpy as np import pandas as pd The Pandas Series Object ------------------------ A Pandas ``Series`` is a one-dimensional array of indexed data: .. code:: ipython3 data = pd.Series([0.25, 0.5, 0.75, 1.0]) data .. parsed-literal:: 0 0.25 1 0.50 2 0.75 3 1.00 dtype: float64 ``Series`` objects wrap both a sequence of values and a sequence of indices, which we can access with the ``values`` and ``index`` attributes. The ``values`` are simply a familiar NumPy array: .. code:: ipython3 data.values .. parsed-literal:: array([0.25, 0.5 , 0.75, 1. ]) .. code:: ipython3 type(_) .. parsed-literal:: numpy.ndarray The ``index`` is an array-like object of type ``pd.Index``: .. code:: ipython3 data.index .. parsed-literal:: RangeIndex(start=0, stop=4, step=1) .. code:: ipython3 print(pd.RangeIndex.__doc__) .. parsed-literal:: Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by DataFrame and Series when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. copy : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base pandas Index type. Int64Index : Index of int64 data. Like with a NumPy array, data can be accessed by the associated index via the familiar Python square-bracket notation: .. code:: ipython3 data[1] .. parsed-literal:: 0.5 .. code:: ipython3 data[1:3] .. parsed-literal:: 1 0.50 2 0.75 dtype: float64 .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.series.Series ``Series`` as generalized NumPy array ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It may look like the ``Series`` object is basically interchangeable with a one-dimensional NumPy array. The essential difference is the presence of the index: while the Numpy Array has an *implicitly defined* integer index used to access the values, the Pandas ``Series`` has an *explicitly defined* index associated with the values. .. code:: ipython3 data = pd.Series([0.25, 0.5, 0.75, 1.0], index=['a', 'b', 'c', 'd']) data .. parsed-literal:: a 0.25 b 0.50 c 0.75 d 1.00 dtype: float64 .. code:: ipython3 data['b'] # item access works as expected .. parsed-literal:: 0.5 We can even use non-contiguous or non-sequential indices: .. code:: ipython3 data = pd.Series([0.25, 0.5, 0.75, 1.0], index=[2, 5, 3, 7]) data .. parsed-literal:: 2 0.25 5 0.50 3 0.75 7 1.00 dtype: float64 .. code:: ipython3 data[5] .. parsed-literal:: 0.5 Series as specialized dictionary ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ You can think of a Pandas ``Series`` a bit like a specialization of a Python dictionary. A dictionary is a structure that maps arbitrary keys to a set of arbitrary values, and a ``Series`` is a structure which maps typed keys to a set of typed values: .. code:: ipython3 population_dict = {'California': 38332521, 'Texas': 26448193, 'New York': 19651127, 'Florida': 19552860, 'Illinois': 12882135} population = pd.Series(population_dict) population .. parsed-literal:: California 38332521 Texas 26448193 New York 19651127 Florida 19552860 Illinois 12882135 dtype: int64 .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.series.Series .. code:: ipython3 population.index .. parsed-literal:: Index(['California', 'Texas', 'New York', 'Florida', 'Illinois'], dtype='object') .. code:: ipython3 population['California'] # typical dictionary-style item access .. parsed-literal:: 38332521 .. code:: ipython3 population['California':'Illinois'] # array-like slicing .. parsed-literal:: California 38332521 Texas 26448193 New York 19651127 Florida 19552860 Illinois 12882135 dtype: int64 The Pandas DataFrame Object --------------------------- The next fundamental structure in Pandas is the ``DataFrame`` which can be thought of either as a generalization of a NumPy array, or as a specialization of a Python dictionary. DataFrame as a generalized NumPy array ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If a ``Series`` is an analog of a one-dimensional array with flexible indices, a ``DataFrame`` is an analog of a two-dimensional array with both flexible row indices and flexible column names. You can think of a ``DataFrame`` as a sequence of *aligned* ``Series`` objects. Here, by *aligned* we mean that they share the same index: .. code:: ipython3 area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297, 'Florida': 170312, 'Illinois': 149995} area = pd.Series(area_dict) area .. parsed-literal:: California 423967 Texas 695662 New York 141297 Florida 170312 Illinois 149995 dtype: int64 .. code:: ipython3 states = pd.DataFrame({'population': population, 'area': area}) states .. raw:: html
population area
California 38332521 423967
Texas 26448193 695662
New York 19651127 141297
Florida 19552860 170312
Illinois 12882135 149995
.. code:: ipython3 type(_) .. parsed-literal:: pandas.core.frame.DataFrame .. code:: ipython3 states.index .. parsed-literal:: Index(['California', 'Texas', 'New York', 'Florida', 'Illinois'], dtype='object') Additionally, the ``DataFrame`` has a ``columns`` attribute, which is an ``Index`` object holding the column labels: .. code:: ipython3 states.columns .. parsed-literal:: Index(['population', 'area'], dtype='object') .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.indexes.base.Index Thus the ``DataFrame`` can be thought of as a generalization of a two-dimensional NumPy array, where both the rows and columns have a generalized index for accessing the data. DataFrame as specialized dictionary ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Similarly, we can also think of a ``DataFrame`` as a specialization of a dictionary. Where a dictionary maps a key to a value, a ``DataFrame`` maps a column name to a ``Series`` of column data: .. code:: ipython3 states['area'] # "feature" .. parsed-literal:: California 423967 Texas 695662 New York 141297 Florida 170312 Illinois 149995 Name: area, dtype: int64 Constructing DataFrame objects ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ From a single Series object ^^^^^^^^^^^^^^^^^^^^^^^^^^^ A ``DataFrame`` is a collection of ``Series`` objects, and a single-column ``DataFrame`` can be constructed from a single ``Series``: .. code:: ipython3 pd.DataFrame(population, columns=['population']) .. raw:: html
population
California 38332521
Texas 26448193
New York 19651127
Florida 19552860
Illinois 12882135
From a list of dicts ^^^^^^^^^^^^^^^^^^^^ .. code:: ipython3 data = [{'a': i, 'b': 2 * i} for i in range(3)] data .. parsed-literal:: [{'a': 0, 'b': 0}, {'a': 1, 'b': 2}, {'a': 2, 'b': 4}] .. code:: ipython3 pd.DataFrame(data) .. raw:: html
a b
0 0 0
1 1 2
2 2 4
.. code:: ipython3 pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}]) # Pandas will fill missing keys with ``NaN`` .. raw:: html
a b c
0 1.0 2 NaN
1 NaN 3 4.0
From a two-dimensional NumPy array ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Given a two-dimensional array of data, we can create a ``DataFrame`` with any specified column and index names: .. code:: ipython3 np.random.rand(3, 2) .. parsed-literal:: array([[0.30282887, 0.48376433], [0.53588853, 0.97428136], [0.94756199, 0.46766408]]) .. code:: ipython3 pd.DataFrame(np.random.rand(3, 2), columns=['foo', 'bar'], index=['a', 'b', 'c']) .. raw:: html
foo bar
a 0.759907 0.458958
b 0.776779 0.767430
c 0.131552 0.740137
From a NumPy structured array ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code:: ipython3 A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')]) A .. parsed-literal:: array([(0, 0.), (0, 0.), (0, 0.)], dtype=[('A', '
A B
0 0 0.0
1 0 0.0
2 0 0.0
The Pandas Index Object ----------------------- This ``Index`` object is an interesting structure in itself, and it can be thought of either as an *immutable array* or as an *ordered set* (technically a multi-set, as ``Index`` objects may contain repeated values). .. code:: ipython3 ind = pd.Index([2, 3, 5, 7, 11]) ind .. parsed-literal:: Int64Index([2, 3, 5, 7, 11], dtype='int64') Index as immutable array ~~~~~~~~~~~~~~~~~~~~~~~~ The ``Index`` in many ways operates like an array. .. code:: ipython3 ind[1] .. parsed-literal:: 3 .. code:: ipython3 ind[::2] .. parsed-literal:: Int64Index([2, 5, 11], dtype='int64') ``Index`` objects also have many of the attributes familiar from NumPy arrays: .. code:: ipython3 ind.size, ind.shape, ind.ndim, ind.dtype, .. parsed-literal:: (5, (5,), 1, dtype('int64')) One difference is that indices are immutable–that is, they cannot be modified via the normal means: .. code:: ipython3 ind[1] = 0 :: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) in ----> 1 ind[1] = 0 ~/Developer/py-venvs/sphinx-venv/lib/python3.9/site-packages/pandas/core/indexes/base.py in __setitem__(self, key, value) 4275 @final 4276 def __setitem__(self, key, value): -> 4277 raise TypeError("Index does not support mutable operations") 4278 4279 def __getitem__(self, key): TypeError: Index does not support mutable operations Index as ordered set ~~~~~~~~~~~~~~~~~~~~ The ``Index`` object follows many of the conventions used by Python’s built-in ``set`` data structure, so that unions, intersections, differences, and other combinations can be computed in a familiar way: .. code:: ipython3 indA = pd.Index([1, 3, 5, 7, 9]) indB = pd.Index([2, 3, 5, 7, 11]) .. code:: ipython3 indA.intersection(indB) # intersection .. parsed-literal:: Int64Index([3, 5, 7], dtype='int64') .. code:: ipython3 indA.union(indB) # union .. parsed-literal:: Int64Index([1, 2, 3, 5, 7, 9, 11], dtype='int64') .. code:: ipython3 indA.symmetric_difference(indB) # symmetric difference .. parsed-literal:: Int64Index([1, 2, 9, 11], dtype='int64') Data Indexing and Selection =========================== To modify values in NumPy arrays we use indexing (e.g., ``arr[2, 1]``), slicing (e.g., ``arr[:, 1:5]``), masking (e.g., ``arr[arr > 0]``), fancy indexing (e.g., ``arr[0, [1, 5]]``), and combinations thereof (e.g., ``arr[:, [1, 5]]``). Here we’ll look at similar means of accessing and modifying values in Pandas ``Series`` and ``DataFrame`` objects. If you have used the NumPy patterns, the corresponding patterns in Pandas will feel very familiar, though there are a few quirks to be aware of. Data Selection in Series ------------------------ A ``Series`` object acts in many ways like a one-dimensional NumPy array, and in many ways like a standard Python dictionary. Series as dictionary ~~~~~~~~~~~~~~~~~~~~ Like a dictionary, the ``Series`` object provides a mapping from a collection of keys to a collection of values: .. code:: ipython3 data = pd.Series([0.25, 0.5, 0.75, 1.0], index=['a', 'b', 'c', 'd']) data .. parsed-literal:: a 0.25 b 0.50 c 0.75 d 1.00 dtype: float64 .. code:: ipython3 data['b'] # mnemonic indexing .. parsed-literal:: 0.5 .. code:: ipython3 'a' in data # dictionary-like Python expressions... .. parsed-literal:: True .. code:: ipython3 data.keys() # ...and methods. .. parsed-literal:: Index(['a', 'b', 'c', 'd'], dtype='object') .. code:: ipython3 list(data.items()) .. parsed-literal:: [('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)] ``Series`` objects can even be modified with a dictionary-like syntax: .. code:: ipython3 data['e'] = 1.25 data .. parsed-literal:: a 0.25 b 0.50 c 0.75 d 1.00 e 1.25 dtype: float64 This easy mutability of the objects is a convenient feature: under the hood, Pandas is making decisions about memory layout and data copying that might need to take place. Series as one-dimensional array ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A ``Series`` builds on this dictionary-like interface and provides array-style item selection via the same basic mechanisms as NumPy arrays – that is, *slices*, *masking*, and *fancy indexing*: .. code:: ipython3 data['a':'c'] # slicing by explicit index .. parsed-literal:: a 0.25 b 0.50 c 0.75 dtype: float64 .. code:: ipython3 data[0:2] # slicing by implicit integer index .. parsed-literal:: a 0.25 b 0.50 dtype: float64 .. code:: ipython3 data[(data > 0.3) & (data < 0.8)] # masking .. parsed-literal:: b 0.50 c 0.75 dtype: float64 because .. code:: ipython3 (data > 0.3) & (data < 0.8) .. parsed-literal:: a False b True c True d False e False dtype: bool .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.series.Series .. code:: ipython3 data[['a', 'e']] # fancy indexing .. parsed-literal:: a 0.25 e 1.25 dtype: float64 Notice that when slicing with an explicit index (i.e., ``data['a':'c']``), the final index is *included* in the slice, while when slicing with an implicit index (i.e., ``data[0:2]``), the final index is *excluded* from the slice. Indexers: loc, iloc, and ix ~~~~~~~~~~~~~~~~~~~~~~~~~~~ If your ``Series`` has an explicit integer index, an indexing operation such as ``data[1]`` will use the explicit indices, while a slicing operation like ``data[1:3]`` will use the implicit Python-style index. .. code:: ipython3 data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5]) data .. parsed-literal:: 1 a 3 b 5 c dtype: object .. code:: ipython3 data[1] # explicit index when indexing .. parsed-literal:: 'a' .. code:: ipython3 data[1:3] # implicit index when slicing .. parsed-literal:: 3 b 5 c dtype: object Because of this potential confusion in the case of integer indexes, Pandas provides some special *indexer* attributes that explicitly expose certain indexing schemes. These are not functional methods, but attributes that expose a particular slicing interface to the data in the ``Series``. First, the ``loc`` attribute allows indexing and slicing that always references the explicit index: .. code:: ipython3 data.loc[1] .. parsed-literal:: 'a' .. code:: ipython3 data.loc[1:3] .. parsed-literal:: 1 a 3 b dtype: object The ``iloc`` attribute allows indexing and slicing that always references the implicit Python-style index: .. code:: ipython3 data.iloc[1:3] .. parsed-literal:: 3 b 5 c dtype: object A third indexing attribute, ``ix``, is a hybrid of the two, and for ``Series`` objects is equivalent to standard ``[]``-based indexing. The purpose of the ``ix`` indexer will become more apparent in the context of ``DataFrame`` objects. Data Selection in DataFrame --------------------------- Recall that a ``DataFrame`` acts in many ways like a two-dimensional or structured array, and in other ways like a dictionary of ``Series`` structures sharing the same index. .. code:: ipython3 area = pd.Series({'California': 423967, 'Texas': 695662, 'New York': 141297, 'Florida': 170312, 'Illinois': 149995}) pop = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127, 'Florida': 19552860, 'Illinois': 12882135}) .. code:: ipython3 data = pd.DataFrame({'area':area, 'pop':pop}) data .. raw:: html
area pop
California 423967 38332521
Texas 695662 26448193
New York 141297 19651127
Florida 170312 19552860
Illinois 149995 12882135
.. code:: ipython3 data['area'] # columns can be accessed via dict-style indexing .. parsed-literal:: California 423967 Texas 695662 New York 141297 Florida 170312 Illinois 149995 Name: area, dtype: int64 .. code:: ipython3 data.area # alternatively, use attribute-style access with column names .. parsed-literal:: California 423967 Texas 695662 New York 141297 Florida 170312 Illinois 149995 Name: area, dtype: int64 this dictionary-style syntax can also be used to modify the object, in this case adding a new column: .. code:: ipython3 data['density'] = data['pop'] / data['area'] data .. raw:: html
area pop density
California 423967 38332521 90.413926
Texas 695662 26448193 38.018740
New York 141297 19651127 139.076746
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763
DataFrame as two-dimensional array ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``DataFrame`` can also be viewed as an enhanced two-dimensional array: .. code:: ipython3 data.values # examine the raw underlying data array .. parsed-literal:: array([[4.23967000e+05, 3.83325210e+07, 9.04139261e+01], [6.95662000e+05, 2.64481930e+07, 3.80187404e+01], [1.41297000e+05, 1.96511270e+07, 1.39076746e+02], [1.70312000e+05, 1.95528600e+07, 1.14806121e+02], [1.49995000e+05, 1.28821350e+07, 8.58837628e+01]]) .. code:: ipython3 data.values.T .. parsed-literal:: array([[4.23967000e+05, 6.95662000e+05, 1.41297000e+05, 1.70312000e+05, 1.49995000e+05], [3.83325210e+07, 2.64481930e+07, 1.96511270e+07, 1.95528600e+07, 1.28821350e+07], [9.04139261e+01, 3.80187404e+01, 1.39076746e+02, 1.14806121e+02, 8.58837628e+01]]) .. code:: ipython3 type(_) .. parsed-literal:: numpy.ndarray .. code:: ipython3 data.T # transpose the full DataFrame object .. raw:: html
California Texas New York Florida Illinois
area 4.239670e+05 6.956620e+05 1.412970e+05 1.703120e+05 1.499950e+05
pop 3.833252e+07 2.644819e+07 1.965113e+07 1.955286e+07 1.288214e+07
density 9.041393e+01 3.801874e+01 1.390767e+02 1.148061e+02 8.588376e+01
.. code:: ipython3 type(_) .. parsed-literal:: pandas.core.frame.DataFrame .. code:: ipython3 data.values[0] # passing a single index to an array accesses a row .. parsed-literal:: array([4.23967000e+05, 3.83325210e+07, 9.04139261e+01]) .. code:: ipython3 data['area'] # assing a single "index" to access a column .. parsed-literal:: California 423967 Texas 695662 New York 141297 Florida 170312 Illinois 149995 Name: area, dtype: int64 Using the ``iloc`` indexer, we can index the underlying array as if it is a simple NumPy array (using the implicit Python-style index) .. code:: ipython3 data.iloc[:3, :2] .. raw:: html
area pop
California 423967 38332521
Texas 695662 26448193
New York 141297 19651127
Similarly, using the ``loc`` indexer we can index the underlying data in an array-like style but using the explicit index and column names: .. code:: ipython3 data.loc[:'Illinois', :'pop'] .. raw:: html
area pop
California 423967 38332521
Texas 695662 26448193
New York 141297 19651127
Florida 170312 19552860
Illinois 149995 12882135
Any of the familiar NumPy-style data access patterns can be used within these indexers. .. code:: ipython3 data.loc[data.density > 100, ['pop', 'density']] .. raw:: html
pop density
New York 19651127 139.076746
Florida 19552860 114.806121
Any of these indexing conventions may also be used to set or modify values; this is done in the standard way that you might be accustomed to from working with NumPy: .. code:: ipython3 data.iloc[0, 2] = 90 data .. raw:: html
area pop density
California 423967 38332521 90.000000
Texas 695662 26448193 38.018740
New York 141297 19651127 139.076746
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763
Additional indexing conventions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. code:: ipython3 data['Florida':'Illinois'] # *slicing* refers to rows .. raw:: html
area pop density
Florida 170312 19552860 114.806121
Illinois 149995 12882135 85.883763
.. code:: ipython3 data[data.density > 100] # direct masking operations are also interpreted row-wise .. raw:: html
area pop density
New York 141297 19651127 139.076746
Florida 170312 19552860 114.806121
Operating on Data in Pandas =========================== One of the essential pieces of NumPy is the ability to perform quick element-wise operations, both with basic arithmetic (addition, subtraction, multiplication, etc.) and with more sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.). Pandas inherits much of this functionality from NumPy. Pandas includes a couple useful twists, however: for unary operations like negation and trigonometric functions, these ufuncs will *preserve index and column labels* in the output, and for binary operations such as addition and multiplication, Pandas will automatically *align indices* when passing the objects to the ufunc. Ufuncs: Index Preservation -------------------------- Because Pandas is designed to work with NumPy, any NumPy ufunc will work on Pandas ``Series`` and ``DataFrame`` objects: .. code:: ipython3 rng = np.random.RandomState(42) ser = pd.Series(rng.randint(0, 10, 4)) ser .. parsed-literal:: 0 6 1 3 2 7 3 4 dtype: int64 .. code:: ipython3 rng.randint(0, 10, (3, 4)) .. parsed-literal:: array([[1, 7, 5, 1], [4, 0, 9, 5], [8, 0, 9, 2]]) .. code:: ipython3 df = pd.DataFrame(rng.randint(0, 10, (3, 4)), columns=['A', 'B', 'C', 'D']) df .. raw:: html
A B C D
0 6 3 8 2
1 4 2 6 4
2 8 6 1 3
If we apply a NumPy ufunc on either of these objects, the result will be another Pandas object *with the indices preserved:* .. code:: ipython3 np.exp(ser) .. parsed-literal:: 0 403.428793 1 20.085537 2 1096.633158 3 54.598150 dtype: float64 .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.series.Series .. code:: ipython3 np.sin(df * np.pi / 4) # a slightly more complex calculation .. raw:: html
A B C D
0 -1.000000e+00 0.707107 -2.449294e-16 1.000000e+00
1 1.224647e-16 1.000000 -1.000000e+00 1.224647e-16
2 -2.449294e-16 -1.000000 7.071068e-01 7.071068e-01
.. code:: ipython3 type(_) .. parsed-literal:: pandas.core.frame.DataFrame UFuncs: Index Alignment ----------------------- For binary operations on two ``Series`` or ``DataFrame`` objects, Pandas will align indices in the process of performing the operation. Index alignment in Series ~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we are combining two different data sources, and find only the top three US states by *area* and the top three US states by *population*: .. code:: ipython3 area = pd.Series({'Alaska': 1723337, 'Texas': 695662, 'California': 423967}, name='area') population = pd.Series({'California': 38332521, 'Texas': 26448193, 'New York': 19651127}, name='population') .. code:: ipython3 population / area .. parsed-literal:: Alaska NaN California 90.413926 New York NaN Texas 38.018740 dtype: float64 The resulting array contains the *union* of indices of the two input arrays, which could be determined using standard Python set arithmetic on these indices: .. code:: ipython3 area.index.union(population.index) # this does create a new index and doesn't modify in place. .. parsed-literal:: Index(['Alaska', 'California', 'New York', 'Texas'], dtype='object') .. code:: ipython3 area.index .. parsed-literal:: Index(['Alaska', 'Texas', 'California'], dtype='object') Any item for which one or the other does not have an entry is marked with ``NaN``, or “Not a Number,” which is how Pandas marks missing data . This index matching is implemented this way for any of Python’s built-in arithmetic expressions; any missing values are filled in with NaN by default: .. code:: ipython3 A = pd.Series([2, 4, 6], index=[0, 1, 2]) B = pd.Series([1, 3, 5], index=[1, 2, 3]) A + B .. parsed-literal:: 0 NaN 1 5.0 2 9.0 3 NaN dtype: float64 If using NaN values is not the desired behavior, the fill value can be modified using appropriate object methods in place of the operators: .. code:: ipython3 A.add(B, fill_value=0) .. parsed-literal:: 0 2.0 1 5.0 2 9.0 3 5.0 dtype: float64 Index alignment in DataFrame ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A similar type of alignment takes place for *both* columns and indices when performing operations on ``DataFrame``\ s: .. code:: ipython3 A = pd.DataFrame(rng.randint(0, 20, (2, 2)), columns=list('AB')) A .. raw:: html
A B
0 13 17
1 8 1
.. code:: ipython3 B = pd.DataFrame(rng.randint(0, 10, (3, 3)), columns=list('BAC')) B .. raw:: html
B A C
0 1 5 5
1 9 3 5
2 1 9 1
.. code:: ipython3 A + B .. raw:: html
A B C
0 18.0 18.0 NaN
1 11.0 10.0 NaN
2 NaN NaN NaN
.. code:: ipython3 fill = A.stack().mean() fill .. parsed-literal:: 9.75 .. code:: ipython3 A.add(B, fill_value=fill) .. raw:: html
A B C
0 18.00 18.00 14.75
1 11.00 10.00 14.75
2 18.75 10.75 10.75
The following table lists Python operators and their equivalent Pandas object methods: =============== ====================================== Python Operator Pandas Method(s) =============== ====================================== ``+`` ``add()`` ``-`` ``sub()``, ``subtract()`` ``*`` ``mul()``, ``multiply()`` ``/`` ``truediv()``, ``div()``, ``divide()`` ``//`` ``floordiv()`` ``%`` ``mod()`` ``**`` ``pow()`` =============== ====================================== Ufuncs: Operations Between DataFrame and Series ----------------------------------------------- When performing operations between a ``DataFrame`` and a ``Series``, the index and column alignment is similarly maintained. Operations between a ``DataFrame`` and a ``Series`` are similar to operations between a two-dimensional and one-dimensional NumPy array. .. code:: ipython3 A = rng.randint(10, size=(3, 4)) A .. parsed-literal:: array([[3, 8, 2, 4], [2, 6, 4, 8], [6, 1, 3, 8]]) .. code:: ipython3 type(A) .. parsed-literal:: numpy.ndarray .. code:: ipython3 A - A[0] .. parsed-literal:: array([[ 0, 0, 0, 0], [-1, -2, 2, 4], [ 3, -7, 1, 4]]) According to NumPy’s broadcasting rules , subtraction between a two-dimensional array and one of its rows is applied row-wise. In Pandas, the convention similarly operates row-wise by default: .. code:: ipython3 df = pd.DataFrame(A, columns=list('QRST')) df - df.iloc[0] .. raw:: html
Q R S T
0 0 0 0 0
1 -1 -2 2 4
2 3 -7 1 4
If you would instead like to operate column-wise you have to specify the ``axis`` keyword: .. code:: ipython3 df.subtract(df['R'], axis=0) .. raw:: html
Q R S T
0 -5 0 -6 -4
1 -4 0 -2 2
2 5 0 2 7
Handling Missing Data ===================== The difference between data found in many tutorials and data in the real world is that real-world data is rarely clean and homogeneous. In particular, many interesting datasets will have some amount of data missing. To make matters even more complicated, different data sources may indicate missing data in different ways. Trade-Offs in Missing Data Conventions -------------------------------------- To indicate the presence of missing data in a table or DataFrame we can use two strategies: using a *mask* that globally indicates missing values, or choosing a *sentinel value* that indicates a missing entry. In the masking approach, the mask might be an entirely separate Boolean array, or it may involve appropriation of one bit in the data representation to locally indicate the null status of a value. In the sentinel approach, the sentinel value could be some data-specific convention, such as indicating a missing integer value with -9999 or some rare bit pattern, or it could be a more global convention, such as indicating a missing floating-point value with NaN (Not a Number). None of these approaches is without trade-offs: use of a separate mask array requires allocation of an additional Boolean array. A sentinel value reduces the range of valid values that can be represented, and may require extra (often non-optimized) logic in CPU and GPU arithmetic. Missing Data in Pandas ---------------------- The way in which Pandas handles missing values is constrained by its reliance on the NumPy package, which does **not have** a built-in notion of NA values for non-floating-point data types. NumPy does have support for masked arrays – that is, arrays that have a separate Boolean mask array attached for marking data as “good” or “bad.” Pandas could have derived from this, but the overhead in both storage, computation, and code maintenance makes that an unattractive choice. With these constraints in mind, Pandas chose to use sentinels for missing data, and further chose to use two already-existing Python null values: the special floating-point ``NaN`` value, and the Python ``None`` object. ``None``: Pythonic missing data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The first sentinel value used by Pandas is ``None``, a Python singleton object that is often used for missing data in Python code. Because it is a Python object, ``None`` cannot be used in any arbitrary NumPy/Pandas array, but only in arrays with data type ``'object'`` (i.e., arrays of Python objects): .. code:: ipython3 vals1 = np.array([1, None, 3, 4]) vals1 .. parsed-literal:: array([1, None, 3, 4], dtype=object) Any operations on the data will be done at the Python level, with much more overhead than the typically fast operations seen for arrays with native types: .. code:: ipython3 for dtype in ['object', 'int']: print("dtype =", dtype) %timeit np.arange(1E6, dtype=dtype).sum() print() .. parsed-literal:: dtype = object 81.8 ms ± 125 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) dtype = int 1.87 ms ± 34.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) The use of Python objects in an array also means that if you perform aggregations like ``sum()`` or ``min()`` across an array with a ``None`` value, you will generally get an error: .. code:: ipython3 vals1.sum() :: --------------------------------------------------------------------------- TypeError Traceback (most recent call last) in ----> 1 vals1.sum() ~/Developer/venvs/py-ml/lib/python3.8/site-packages/numpy/core/_methods.py in _sum(a, axis, dtype, out, keepdims, initial, where) 45 def _sum(a, axis=None, dtype=None, out=None, keepdims=False, 46 initial=_NoValue, where=True): ---> 47 return umr_sum(a, axis, dtype, out, keepdims, initial, where) 48 49 def _prod(a, axis=None, dtype=None, out=None, keepdims=False, TypeError: unsupported operand type(s) for +: 'int' and 'NoneType' ``NaN``: Missing numerical data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The other missing data representation, ``NaN`` (acronym for *Not a Number*), is different; it is a special floating-point value recognized by all systems that use the standard IEEE floating-point representation: .. code:: ipython3 vals2 = np.array([1, np.nan, 3, 4]) vals2.dtype .. parsed-literal:: dtype('float64') .. code:: ipython3 1 + np.nan, 0 * np.nan .. parsed-literal:: (nan, nan) .. code:: ipython3 vals2.sum(), vals2.min(), vals2.max() .. parsed-literal:: (nan, nan, nan) NumPy does provide some special aggregations that will ignore these missing values: .. code:: ipython3 np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2) .. parsed-literal:: (8.0, 1.0, 4.0) NaN and None in Pandas ~~~~~~~~~~~~~~~~~~~~~~ ``NaN`` and ``None`` both have their place, and Pandas is built to handle the two of them nearly interchangeably, converting between them where appropriate: .. code:: ipython3 pd.Series([1, np.nan, 2, None]) .. parsed-literal:: 0 1.0 1 NaN 2 2.0 3 NaN dtype: float64 The following table lists the upcasting conventions in Pandas when NA values are introduced: ============ =========================== ====================== Typeclass Conversion When Storing NAs NA Sentinel Value ============ =========================== ====================== ``floating`` No change ``np.nan`` ``object`` No change ``None`` or ``np.nan`` ``integer`` Cast to ``float64`` ``np.nan`` ``boolean`` Cast to ``object`` ``None`` or ``np.nan`` ============ =========================== ====================== Keep in mind that in Pandas, string data is always stored with an ``object`` dtype. Operating on Null Values ------------------------ As we have seen, Pandas treats ``None`` and ``NaN`` as essentially interchangeable for indicating missing or null values. To facilitate this convention, there are several useful methods for detecting, removing, and replacing null values in Pandas data structures. They are: - ``isnull()``: Generate a boolean mask indicating missing values - ``notnull()``: Opposite of ``isnull()`` - ``dropna()``: Return a filtered version of the data - ``fillna()``: Return a copy of the data with missing values filled or imputed Detecting null values ~~~~~~~~~~~~~~~~~~~~~ Pandas data structures have two useful methods for detecting null data: ``isnull()`` and ``notnull()``. Either one will return a Boolean mask over the data: .. code:: ipython3 data = pd.Series([1, np.nan, 'hello', None]) data.isnull() .. parsed-literal:: 0 False 1 True 2 False 3 True dtype: bool Dropping null values ~~~~~~~~~~~~~~~~~~~~ In addition to the masking used before, there are the convenience methods, ``dropna()`` (which removes NA values) and ``fillna()`` (which fills in NA values): .. code:: ipython3 data.dropna() .. parsed-literal:: 0 1 2 hello dtype: object For a ``DataFrame``, there are more options: .. code:: ipython3 df = pd.DataFrame([[1, np.nan, 2], [2, 3, 5], [np.nan, 4, 6]]) df .. raw:: html
0 1 2
0 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6
.. code:: ipython3 df.dropna() # drop all rows in which *any* null value is present .. raw:: html
0 1 2
1 2.0 3.0 5
.. code:: ipython3 df.dropna(axis='columns') # drop NA values from all columns containing a null value .. raw:: html
2
0 2
1 5
2 6
The default is ``how='any'``, such that any row or column (depending on the ``axis`` keyword) containing a null value will be dropped. .. code:: ipython3 df[3] = np.nan df .. raw:: html
0 1 2 3
0 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN
You can also specify ``how='all'``, which will only drop rows/columns that are *all* null values: .. code:: ipython3 df.dropna(axis='columns', how='all') .. raw:: html
0 1 2
0 1.0 NaN 2
1 2.0 3.0 5
2 NaN 4.0 6
The ``thresh`` parameter lets you specify a minimum number of non-null values for the row/column to be kept: .. code:: ipython3 df.dropna(axis='rows', thresh=3) .. raw:: html
0 1 2 3
1 2.0 3.0 5 NaN
Filling null values ~~~~~~~~~~~~~~~~~~~ Sometimes rather than dropping NA values, you’d rather replace them with a valid value. This value might be a single number like zero, or it might be some sort of imputation or interpolation from the good values. You could do this in-place using the ``isnull()`` method as a mask, but because it is such a common operation Pandas provides the ``fillna()`` method, which returns a copy of the array with the null values replaced. .. code:: ipython3 data = pd.Series([1, np.nan, 2, None, 3], index=list('abcde')) data .. parsed-literal:: a 1.0 b NaN c 2.0 d NaN e 3.0 dtype: float64 .. code:: ipython3 data.fillna(0) # fill NA entries with a single value .. parsed-literal:: a 1.0 b 0.0 c 2.0 d 0.0 e 3.0 dtype: float64 .. code:: ipython3 data.fillna(method='ffill') # specify a forward-fill to propagate the previous value forward .. parsed-literal:: a 1.0 b 1.0 c 2.0 d 2.0 e 3.0 dtype: float64 .. code:: ipython3 data.fillna(method='bfill') # specify a back-fill to propagate the next values backward .. parsed-literal:: a 1.0 b 2.0 c 2.0 d 3.0 e 3.0 dtype: float64 For ``DataFrame``\ s, the options are similar, but we can also specify an ``axis`` along which the fills take place: .. code:: ipython3 df .. raw:: html
0 1 2 3
0 1.0 NaN 2 NaN
1 2.0 3.0 5 NaN
2 NaN 4.0 6 NaN
.. code:: ipython3 df.fillna(method='ffill', axis=1) .. raw:: html
0 1 2 3
0 1.0 1.0 2.0 2.0
1 2.0 3.0 5.0 5.0
2 NaN 4.0 6.0 6.0
Hierarchical Indexing ===================== Up to this point we’ve been focused primarily on one-dimensional and two-dimensional data, stored in Pandas ``Series`` and ``DataFrame`` objects, respectively. Often it is useful to go beyond this and store higher-dimensional data–that is, data indexed by more than one or two keys. A far more common pattern in practice is to make use of *hierarchical indexing* (also known as *multi-indexing*) to incorporate multiple index *levels* within a single index. In this way, higher-dimensional data can be compactly represented within the familiar one-dimensional ``Series`` and two-dimensional ``DataFrame`` objects. A Multiply Indexed Series ------------------------- Let’s start by considering how we might represent two-dimensional data within a one-dimensional ``Series``. The bad way ~~~~~~~~~~~ Suppose you would like to track data about states from two different years. Using the Pandas tools we’ve already covered, you might be tempted to simply use Python tuples as keys: .. code:: ipython3 index = [('California', 2000), ('California', 2010), ('New York', 2000), ('New York', 2010), ('Texas', 2000), ('Texas', 2010)] populations = [33871648, 37253956, 18976457, 19378102, 20851820, 25145561] pop = pd.Series(populations, index=index) pop .. parsed-literal:: (California, 2000) 33871648 (California, 2010) 37253956 (New York, 2000) 18976457 (New York, 2010) 19378102 (Texas, 2000) 20851820 (Texas, 2010) 25145561 dtype: int64 If you need to select all values from 2010, you’ll need to do some messy (and potentially slow) munging to make it happen: .. code:: ipython3 pop[[i for i in pop.index if i[1] == 2010]] .. parsed-literal:: (California, 2010) 37253956 (New York, 2010) 19378102 (Texas, 2010) 25145561 dtype: int64 The Better Way: Pandas MultiIndex ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Our tuple-based indexing is essentially a rudimentary multi-index, and the Pandas ``MultiIndex`` type gives us the type of operations we wish to have: .. code:: ipython3 index = pd.MultiIndex.from_tuples(index) index .. parsed-literal:: MultiIndex([('California', 2000), ('California', 2010), ( 'New York', 2000), ( 'New York', 2010), ( 'Texas', 2000), ( 'Texas', 2010)], ) .. code:: ipython3 type(_) .. parsed-literal:: pandas.core.indexes.multi.MultiIndex A ``MultiIndex`` contains multiple *levels* of indexing–in this case, the state names and the years, as well as multiple *labels* for each data point which encode these levels. If we re-index our series with this ``MultiIndex``, we see the hierarchical representation of the data: .. code:: ipython3 pop = pop.reindex(index) pop .. parsed-literal:: California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820 2010 25145561 dtype: int64 Here the first two columns of the ``Series`` representation show the multiple index values, while the third column shows the data. Notice that some entries are missing in the first column: in this multi-index representation, any blank entry indicates the same value as the line above it. Now to access all data for which the second index is 2010, we can simply use the Pandas slicing notation: .. code:: ipython3 pop[:, 2010] .. parsed-literal:: California 37253956 New York 19378102 Texas 25145561 dtype: int64 The result is a singly indexed array with just the keys we’re interested in. This syntax is much more convenient (and the operation is much more efficient!) than the home-spun tuple-based multi-indexing solution that we started with. MultiIndex as extra dimension ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We could have stored the same data using a simple ``DataFrame`` with index and column labels; in fact, Pandas is built with this equivalence in mind. The ``unstack()`` method will quickly convert a multiply indexed ``Series`` into a conventionally indexed ``DataFrame``: .. code:: ipython3 pop_df = pop.unstack() pop_df .. raw:: html
2000 2010
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561
.. code:: ipython3 type(pop_df) .. parsed-literal:: pandas.core.frame.DataFrame Naturally, the ``stack()`` method provides the opposite operation: .. code:: ipython3 pop_df.stack() .. parsed-literal:: California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820 2010 25145561 dtype: int64 Seeing this, you might wonder why would we would bother with hierarchical indexing at all. The reason is simple: just as we were able to use multi-indexing to represent two-dimensional data within a one-dimensional ``Series``, we can also use it to represent data of three or more dimensions in a ``Series`` or ``DataFrame``. Each extra level in a multi-index represents an extra dimension of data; taking advantage of this property gives us much more flexibility in the types of data we can represent. Concretely, we might want to add another column of demographic data for each state at each year (say, population under 18) ; with a ``MultiIndex`` this is as easy as adding another column to the ``DataFrame``: .. code:: ipython3 pop_df = pd.DataFrame({'total': pop, 'under18': [9267089, 9284094, 4687374, 4318033, 5906301, 6879014]}) pop_df .. raw:: html
total under18
California 2000 33871648 9267089
2010 37253956 9284094
New York 2000 18976457 4687374
2010 19378102 4318033
Texas 2000 20851820 5906301
2010 25145561 6879014
In addition, all the ufuncs work with hierarchical indices as well: .. code:: ipython3 f_u18 = pop_df['under18'] / pop_df['total'] f_u18.unstack() .. raw:: html
2000 2010
California 0.273594 0.249211
New York 0.247010 0.222831
Texas 0.283251 0.273568
Methods of MultiIndex Creation ------------------------------ The most straightforward way to construct a multiply indexed ``Series`` or ``DataFrame`` is to simply pass a list of two or more index arrays to the constructor: .. code:: ipython3 df = pd.DataFrame(np.random.rand(4, 2), index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]], columns=['data1', 'data2']) df .. raw:: html
data1 data2
a 1 0.482545 0.352967
2 0.574280 0.063582
b 1 0.102271 0.569372
2 0.753026 0.194597
Similarly, if you pass a dictionary with appropriate tuples as keys, Pandas will automatically recognize this and use a ``MultiIndex`` by default: .. code:: ipython3 data = {('California', 2000): 33871648, ('California', 2010): 37253956, ('Texas', 2000): 20851820, ('Texas', 2010): 25145561, ('New York', 2000): 18976457, ('New York', 2010): 19378102} pd.Series(data) .. parsed-literal:: California 2000 33871648 2010 37253956 Texas 2000 20851820 2010 25145561 New York 2000 18976457 2010 19378102 dtype: int64 Explicit MultiIndex constructors ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For more flexibility in how the index is constructed, you can instead use the class method constructors available in the ``pd.MultiIndex``. You can construct the ``MultiIndex`` from a simple list of arrays giving the index values within each level: .. code:: ipython3 pd.MultiIndex.from_arrays([['a', 'a', 'b', 'b'], [1, 2, 1, 2]]) .. parsed-literal:: MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2)], ) You can even construct it from a Cartesian product of single indices: .. code:: ipython3 pd.MultiIndex.from_product([['a', 'b'], [1, 2]]) .. parsed-literal:: MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2)], ) MultiIndex level names ~~~~~~~~~~~~~~~~~~~~~~ Sometimes it is convenient to name the levels of the ``MultiIndex``. This can be accomplished by passing the ``names`` argument to any of the above ``MultiIndex`` constructors, or by setting the ``names`` attribute of the index after the fact: .. code:: ipython3 pop.index.names = ['state', 'year'] pop .. parsed-literal:: state year California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820 2010 25145561 dtype: int64 MultiIndex for columns ~~~~~~~~~~~~~~~~~~~~~~ In a ``DataFrame``, the rows and columns are completely symmetric, and just as the rows can have multiple levels of indices, the columns can have multiple levels as well: .. code:: ipython3 index = pd.MultiIndex.from_product([[2013, 2014], [1, 2]], names=['year', 'visit']) columns = pd.MultiIndex.from_product([['Bob', 'Guido', 'Sue'], ['HR', 'Temp']], names=['subject', 'type']) data = np.round(np.random.randn(4, 6), 1) # mock some data data[:, ::2] *= 10 data += 37 health_data = pd.DataFrame(data, index=index, columns=columns) health_data # create the DataFrame .. raw:: html
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 48.0 38.1 19.0 38.4 52.0 38.8
2 34.0 38.0 37.0 36.9 31.0 37.6
2014 1 41.0 37.0 52.0 38.9 38.0 37.4
2 47.0 36.9 46.0 36.4 42.0 36.6
This is fundamentally four-dimensional data, where the dimensions are the subject, the measurement type, the year, and the visit number; we can index the top-level column by the person’s name and get a full ``DataFrame`` containing just that person’s information: .. code:: ipython3 health_data['Guido'] .. raw:: html
type HR Temp
year visit
2013 1 19.0 38.4
2 37.0 36.9
2014 1 52.0 38.9
2 46.0 36.4
Indexing and Slicing a MultiIndex --------------------------------- Indexing and slicing on a ``MultiIndex`` is designed to be intuitive, and it helps if you think about the indices as added dimensions. Multiply indexed Series ~~~~~~~~~~~~~~~~~~~~~~~ Consider the multiply indexed ``Series`` of state populations we saw earlier: .. code:: ipython3 pop .. parsed-literal:: state year California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820 2010 25145561 dtype: int64 .. code:: ipython3 pop['California', 2000] # access single elements by indexing with multiple terms .. parsed-literal:: 33871648 The ``MultiIndex`` also supports *partial indexing*, or indexing just one of the levels in the index. The result is another ``Series``, with the lower-level indices maintained: .. code:: ipython3 pop['California'] .. parsed-literal:: year 2000 33871648 2010 37253956 dtype: int64 Other types of indexing and selection could be based either on Boolean masks: .. code:: ipython3 pop[pop > 22000000] .. parsed-literal:: state year California 2000 33871648 2010 37253956 Texas 2010 25145561 dtype: int64 or on fancy indexing: .. code:: ipython3 pop[['California', 'Texas']] .. parsed-literal:: state year California 2000 33871648 2010 37253956 Texas 2000 20851820 2010 25145561 dtype: int64 Multiply indexed DataFrames ~~~~~~~~~~~~~~~~~~~~~~~~~~~ A multiply indexed ``DataFrame`` behaves in a similar manner: .. code:: ipython3 health_data .. raw:: html
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 48.0 38.1 19.0 38.4 52.0 38.8
2 34.0 38.0 37.0 36.9 31.0 37.6
2014 1 41.0 37.0 52.0 38.9 38.0 37.4
2 47.0 36.9 46.0 36.4 42.0 36.6
Remember that columns are primary in a ``DataFrame``, and the syntax used for multiply indexed ``Series`` applies to the columns. We can recover Guido’s heart rate data with a simple operation: .. code:: ipython3 health_data['Guido', 'HR'] .. parsed-literal:: year visit 2013 1 19.0 2 37.0 2014 1 52.0 2 46.0 Name: (Guido, HR), dtype: float64 Also, as with the single-index case, we can use the ``loc``, ``iloc``, and ``ix`` indexers: .. code:: ipython3 health_data.iloc[:2, :2] .. raw:: html
subject Bob
type HR Temp
year visit
2013 1 48.0 38.1
2 34.0 38.0
These indexers provide an array-like view of the underlying two-dimensional data, but each individual index in ``loc`` or ``iloc`` can be passed a tuple of multiple indices: .. code:: ipython3 health_data.loc[:, ('Bob', 'HR')] .. parsed-literal:: year visit 2013 1 48.0 2 34.0 2014 1 41.0 2 47.0 Name: (Bob, HR), dtype: float64 Rearranging Multi-Indices ------------------------- One of the keys to working with multiply indexed data is knowing how to effectively transform the data. There are a number of operations that will preserve all the information in the dataset, but rearrange it for the purposes of various computations. We saw a brief example of this in the ``stack()`` and ``unstack()`` methods, but there are many more ways to finely control the rearrangement of data between hierarchical indices and columns. Sorted and unsorted indices ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Earlier, we briefly mentioned a caveat, but we should emphasize it more here. *Many of the ``MultiIndex`` slicing operations will fail if the index is not sorted.* We’ll start by creating some simple multiply indexed data where the indices are *not lexographically sorted*: .. code:: ipython3 index = pd.MultiIndex.from_product([['a', 'c', 'b'], [1, 2]]) data = pd.Series(np.random.rand(6), index=index) data.index.names = ['char', 'int'] data .. parsed-literal:: char int a 1 0.002105 2 0.280923 c 1 0.008604 2 0.631968 b 1 0.072270 2 0.273800 dtype: float64 .. code:: ipython3 try: data['a':'b'] # try to take a partial slice of this index except KeyError as e: print(type(e)) print(e) .. parsed-literal:: 'Key length (1) was greater than MultiIndex lexsort depth (0)' This is the result of the MultiIndex not being sorted; in general, partial slices and other similar operations require the levels in the ``MultiIndex`` to be in sorted (i.e., lexographical) order. Pandas provides a number of convenience routines to perform this type of sorting; examples are the ``sort_index()`` and ``sortlevel()`` methods of the ``DataFrame``. .. code:: ipython3 data = data.sort_index() data .. parsed-literal:: char int a 1 0.002105 2 0.280923 b 1 0.072270 2 0.273800 c 1 0.008604 2 0.631968 dtype: float64 With the index sorted in this way, partial slicing will work as expected: .. code:: ipython3 data['a':'b'] .. parsed-literal:: char int a 1 0.002105 2 0.280923 b 1 0.072270 2 0.273800 dtype: float64 Stacking and unstacking indices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As we saw briefly before, it is possible to convert a dataset from a stacked multi-index to a simple two-dimensional representation, optionally specifying the level to use: .. code:: ipython3 pop.unstack(level=0) .. raw:: html
state California New York Texas
year
2000 33871648 18976457 20851820
2010 37253956 19378102 25145561
.. code:: ipython3 pop.unstack(level=1) .. raw:: html
year 2000 2010
state
California 33871648 37253956
New York 18976457 19378102
Texas 20851820 25145561
The opposite of ``unstack()`` is ``stack()``, which here can be used to recover the original series: .. code:: ipython3 pop.unstack().stack() .. parsed-literal:: state year California 2000 33871648 2010 37253956 New York 2000 18976457 2010 19378102 Texas 2000 20851820 2010 25145561 dtype: int64 Index setting and resetting ~~~~~~~~~~~~~~~~~~~~~~~~~~~ Another way to rearrange hierarchical data is to turn the index labels into columns; this can be accomplished with the ``reset_index`` method. Calling this on the population dictionary will result in a ``DataFrame`` with a *state* and *year* column holding the information that was formerly in the index. .. code:: ipython3 pop_flat = pop.reset_index(name='population') # specify the name of the data for the column pop_flat .. raw:: html
state year population
0 California 2000 33871648
1 California 2010 37253956
2 New York 2000 18976457
3 New York 2010 19378102
4 Texas 2000 20851820
5 Texas 2010 25145561
Often when working with data in the real world, the raw input data looks like this and it’s useful to build a ``MultiIndex`` from the column values. This can be done with the ``set_index`` method of the ``DataFrame``, which returns a multiply indexed ``DataFrame``: .. code:: ipython3 pop_flat.set_index(['state', 'year']) .. raw:: html
population
state year
California 2000 33871648
2010 37253956
New York 2000 18976457
2010 19378102
Texas 2000 20851820
2010 25145561
Data Aggregations on Multi-Indices ---------------------------------- We’ve previously seen that Pandas has built-in data aggregation methods, such as ``mean()``, ``sum()``, and ``max()``. For hierarchically indexed data, these can be passed a ``level`` parameter that controls which subset of the data the aggregate is computed on. .. code:: ipython3 health_data .. raw:: html
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year visit
2013 1 48.0 38.1 19.0 38.4 52.0 38.8
2 34.0 38.0 37.0 36.9 31.0 37.6
2014 1 41.0 37.0 52.0 38.9 38.0 37.4
2 47.0 36.9 46.0 36.4 42.0 36.6
Perhaps we’d like to average-out the measurements in the two visits each year. We can do this by naming the index level we’d like to explore, in this case the year: .. code:: ipython3 data_mean = health_data.mean(level='year') data_mean .. raw:: html
subject Bob Guido Sue
type HR Temp HR Temp HR Temp
year
2013 41.0 38.05 28.0 37.65 41.5 38.2
2014 44.0 36.95 49.0 37.65 40.0 37.0
By further making use of the ``axis`` keyword, we can take the mean among levels on the columns as well: .. code:: ipython3 data_mean.mean(axis=1, level='type') .. raw:: html
type HR Temp
year
2013 36.833333 37.966667
2014 44.333333 37.200000
Combining Datasets: Concat and Append ===================================== Some of the most interesting studies of data come from combining different data sources. These operations can involve anything from very straightforward concatenation of two different datasets, to more complicated database-style joins and merges that correctly handle any overlaps between the datasets. ``Series`` and ``DataFrame``\ s are built with this type of operation in mind, and Pandas includes functions and methods that make this sort of data wrangling fast and straightforward. Here we’ll take a look at simple concatenation of ``Series`` and ``DataFrame``\ s with the ``pd.concat`` function; later we’ll dive into more sophisticated in-memory merges and joins implemented in Pandas. For convenience, we’ll define this function which creates a ``DataFrame`` of a particular form that will be useful below: .. code:: ipython3 def make_df(cols, ind): """Quickly make a DataFrame""" data = {c: [str(c) + str(i) for i in ind] for c in cols} return pd.DataFrame(data, ind) # example DataFrame make_df('ABC', range(3)) .. raw:: html
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
In addition, we’ll create a quick class that allows us to display multiple ``DataFrame``\ s side by side. The code makes use of the special ``_repr_html_`` method, which IPython uses to implement its rich object display: .. code:: ipython3 class display(object): """Display HTML representation of multiple objects""" template = """

{0}

{1}
""" def __init__(self, *args): self.args = args def _repr_html_(self): return '\n'.join(self.template.format(a, eval(a)._repr_html_()) for a in self.args) def __repr__(self): return '\n\n'.join(a + '\n' + repr(eval(a)) for a in self.args) Simple Concatenation with ``pd.concat`` --------------------------------------- Pandas has a function, ``pd.concat()``, which has a similar syntax to ``np.concatenate`` but contains a number of options that we’ll discuss momentarily: .. code:: python # Signature in Pandas v0.18 pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) ``pd.concat()`` can be used for a simple concatenation of ``Series`` or ``DataFrame`` objects, just as ``np.concatenate()`` can be used for simple concatenations of arrays: .. code:: ipython3 ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3]) ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6]) pd.concat([ser1, ser2]) .. parsed-literal:: 1 A 2 B 3 C 4 D 5 E 6 F dtype: object .. code:: ipython3 df1 = make_df('AB', [1, 2]) df2 = make_df('AB', [3, 4]) display('df1', 'df2', 'pd.concat([df1, df2])') .. raw:: html

df1

A B
1 A1 B1
2 A2 B2

df2

A B
3 A3 B3
4 A4 B4

pd.concat([df1, df2])

A B
1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4
By default, the concatenation takes place row-wise within the ``DataFrame`` (i.e., ``axis=0``). Like ``np.concatenate``, ``pd.concat`` allows specification of an axis along which concatenation will take place: .. code:: ipython3 df3 = make_df('AB', [0, 1]) df4 = make_df('CD', [0, 1]) display('df3', 'df4', "pd.concat([df3, df4], axis=1)") .. raw:: html

df3

A B
0 A0 B0
1 A1 B1

df4

C D
0 C0 D0
1 C1 D1

pd.concat([df3, df4], axis=1)

A B C D
0 A0 B0 C0 D0
1 A1 B1 C1 D1
Duplicate indices ~~~~~~~~~~~~~~~~~ One important difference between ``np.concatenate`` and ``pd.concat`` is that Pandas concatenation *preserves indices*, even if the result will have duplicate indices: .. code:: ipython3 x = make_df('AB', [0, 1]) y = make_df('AB', [2, 3]) y.index = x.index # make duplicate indices! display('x', 'y', 'pd.concat([x, y])') .. raw:: html

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y])

A B
0 A0 B0
1 A1 B1
0 A2 B2
1 A3 B3
Notice the repeated indices in the result. While this is valid within ``DataFrame``\ s, the outcome is often undesirable. ``pd.concat()`` gives us a few ways to handle it. .. code:: ipython3 try: pd.concat([x, y], verify_integrity=True) except ValueError as e: print("ValueError:", e) .. parsed-literal:: ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64') Ignoring the index ^^^^^^^^^^^^^^^^^^ Sometimes the index itself does not matter, and you would prefer it to simply be ignored. This option can be specified using the ``ignore_index`` flag. With this set to true, the concatenation will create a new integer index for the resulting ``Series``: .. code:: ipython3 display('x', 'y', 'pd.concat([x, y], ignore_index=True)') .. raw:: html

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y], ignore_index=True)

A B
0 A0 B0
1 A1 B1
2 A2 B2
3 A3 B3
Adding MultiIndex keys ^^^^^^^^^^^^^^^^^^^^^^ Another option is to use the ``keys`` option to specify a label for the data sources; the result will be a hierarchically indexed series containing the data: .. code:: ipython3 display('x', 'y', "pd.concat([x, y], keys=['x', 'y'])") .. raw:: html

x

A B
0 A0 B0
1 A1 B1

y

A B
0 A2 B2
1 A3 B3

pd.concat([x, y], keys=['x', 'y'])

A B
x 0 A0 B0
1 A1 B1
y 0 A2 B2
1 A3 B3
Concatenation with joins ~~~~~~~~~~~~~~~~~~~~~~~~ In practice, data from different sources might have different sets of column names, and ``pd.concat`` offers several options in this case. Consider the concatenation of the following two ``DataFrame``\ s, which have some (but not all!) columns in common: .. code:: ipython3 df5 = make_df('ABC', [1, 2]) df6 = make_df('BCD', [3, 4]) display('df5', 'df6', 'pd.concat([df5, df6])') .. raw:: html

df5

A B C
1 A1 B1 C1
2 A2 B2 C2

df6

B C D
3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6])

A B C D
1 A1 B1 C1 NaN
2 A2 B2 C2 NaN
3 NaN B3 C3 D3
4 NaN B4 C4 D4
By default, the join is a union of the input column|s (``join='outer'``), but we can change this to an intersection of the columns using ``join='inner'``: Another option is to directly specify the index of the remaininig colums using the ``join_axes`` argument, which takes a list of index objects. .. code:: ipython3 display('df5', 'df6', "pd.concat([df5, df6])") .. raw:: html

df5

A B C
1 A1 B1 C1
2 A2 B2 C2

df6

B C D
3 B3 C3 D3
4 B4 C4 D4

pd.concat([df5, df6])

A B C D
1 A1 B1 C1 NaN
2 A2 B2 C2 NaN
3 NaN B3 C3 D3
4 NaN B4 C4 D4
The ``append()`` method ~~~~~~~~~~~~~~~~~~~~~~~ Because direct array concatenation is so common, ``Series`` and ``DataFrame`` objects have an ``append`` method that can accomplish the same thing in fewer keystrokes. For example, rather than calling ``pd.concat([df1, df2])``, you can simply call ``df1.append(df2)``: .. code:: ipython3 display('df1', 'df2', 'df1.append(df2)') .. raw:: html

df1

A B
1 A1 B1
2 A2 B2

df2

A B
3 A3 B3
4 A4 B4

df1.append(df2)

A B
1 A1 B1
2 A2 B2
3 A3 B3
4 A4 B4
Keep in mind that unlike the ``append()`` and ``extend()`` methods of Python lists, the ``append()`` method in Pandas does not modify the original object–instead it creates a new object with the combined data. It also is not a very efficient method, because it involves creation of a new index *and* data buffer. Thus, if you plan to do multiple ``append`` operations, it is generally better to build a list of ``DataFrame``\ s and pass them all at once to the ``concat()`` function. Combining Datasets: Merge and Join ================================== One essential feature offered by Pandas is its high-performance, in-memory join and merge operations. If you have ever worked with databases, you should be familiar with this type of data interaction. The main interface for this is the ``pd.merge`` function, and we’ll see few examples of how this can work in practice. For convenience, we will start by redefining the ``display()`` functionality: .. code:: ipython3 class display(object): """Display HTML representation of multiple objects""" template = """

{0}

{1}
""" def __init__(self, *args): self.args = args def _repr_html_(self): return '\n'.join(self.template.format(a, eval(a)._repr_html_()) for a in self.args) def __repr__(self): return '\n\n'.join(a + '\n' + repr(eval(a)) for a in self.args) Relational Algebra ------------------ The behavior implemented in ``pd.merge()`` is a subset of what is known as *relational algebra*, which is a formal set of rules for manipulating relational data, and forms the conceptual foundation of operations available in most databases. The strength of the relational algebra approach is that it proposes several primitive operations, which become the building blocks of more complicated operations on any dataset. With this lexicon of fundamental operations implemented efficiently in a database or other program, a wide range of fairly complicated composite operations can be performed. Pandas implements several of these fundamental building-blocks in the ``pd.merge()`` function and the related ``join()`` method of ``Series`` and ``Dataframe``\ s. Categories of Joins ------------------- The ``pd.merge()`` function implements a number of types of joins: the *one-to-one*, *many-to-one*, and *many-to-many* joins. All three types of joins are accessed via an identical call to the ``pd.merge()`` interface; the type of join performed depends on the form of the input data. One-to-one joins ~~~~~~~~~~~~~~~~ Perhaps the simplest type of merge expresion is the one-to-one join, which is in many ways very similar to the column-wise concatenation that we have already seen. As a concrete example, consider the following two ``DataFrames`` which contain information on several employees in a company: .. code:: ipython3 df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) display('df1', 'df2') .. raw:: html

df1

employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df2

employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
3 Sue 2014
To combine this information into a single ``DataFrame``, we can use the ``pd.merge()`` function: .. code:: ipython3 df3 = pd.merge(df1, df2) df3 .. raw:: html
employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014
The ``pd.merge()`` function recognizes that each ``DataFrame`` has an “employee” column, and automatically joins using this column as a key. The result of the merge is a new ``DataFrame`` that combines the information from the two inputs. Notice that the order of entries in each column is not necessarily maintained: in this case, the order of the “employee” column differs between ``df1`` and ``df2``, and the ``pd.merge()`` function correctly accounts for this. Additionally, keep in mind that the merge in general discards the index, except in the special case of merges by index (see the ``left_index`` and ``right_index`` keywords, discussed momentarily). Many-to-one joins ~~~~~~~~~~~~~~~~~ Many-to-one joins are joins in which one of the two key columns contains duplicate entries. For the many-to-one case, the resulting ``DataFrame`` will preserve those duplicate entries as appropriate: .. code:: ipython3 df4 = pd.DataFrame({'group': ['Accounting', 'Engineering', 'HR'], 'supervisor': ['Carly', 'Guido', 'Steve']}) display('df3', 'df4', 'pd.merge(df3, df4)') .. raw:: html

df3

employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014

df4

group supervisor
0 Accounting Carly
1 Engineering Guido
2 HR Steve

pd.merge(df3, df4)

employee group hire_date supervisor
0 Bob Accounting 2008 Carly
1 Jake Engineering 2012 Guido
2 Lisa Engineering 2004 Guido
3 Sue HR 2014 Steve
Many-to-many joins ~~~~~~~~~~~~~~~~~~ Many-to-many joins are a bit confusing conceptually, but are nevertheless well defined. If the key column in both the left and right array contains duplicates, then the result is a many-to-many merge. Consider the following, where we have a ``DataFrame`` showing one or more skills associated with a particular group. By performing a many-to-many join, we can recover the skills associated with any individual person: .. code:: ipython3 df5 = pd.DataFrame({'group': ['Accounting', 'Accounting', 'Engineering', 'Engineering', 'HR', 'HR'], 'skills': ['math', 'spreadsheets', 'coding', 'linux', 'spreadsheets', 'organization']}) display('df1', 'df5', "pd.merge(df1, df5)") .. raw:: html

df1

employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df5

group skills
0 Accounting math
1 Accounting spreadsheets
2 Engineering coding
3 Engineering linux
4 HR spreadsheets
5 HR organization

pd.merge(df1, df5)

employee group skills
0 Bob Accounting math
1 Bob Accounting spreadsheets
2 Jake Engineering coding
3 Jake Engineering linux
4 Lisa Engineering coding
5 Lisa Engineering linux
6 Sue HR spreadsheets
7 Sue HR organization
Specification of the Merge Key ------------------------------ We’ve already seen the default behavior of ``pd.merge()``: it looks for one or more matching column names between the two inputs, and uses this as the key. However, often the column names will not match so nicely, and ``pd.merge()`` provides a variety of options for handling this. The ``on`` keyword ~~~~~~~~~~~~~~~~~~ Most simply, you can explicitly specify the name of the key column using the ``on`` keyword, which takes a column name or a list of column names: .. code:: ipython3 display('df1', 'df2', "pd.merge(df1, df2, on='employee')") .. raw:: html

df1

employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df2

employee hire_date
0 Lisa 2004
1 Bob 2008
2 Jake 2012
3 Sue 2014

pd.merge(df1, df2, on='employee')

employee group hire_date
0 Bob Accounting 2008
1 Jake Engineering 2012
2 Lisa Engineering 2004
3 Sue HR 2014
The ``left_on`` and ``right_on`` keywords ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ At times you may wish to merge two datasets with different column names; for example, we may have a dataset in which the employee name is labeled as “name” rather than “employee”. In this case, we can use the ``left_on`` and ``right_on`` keywords to specify the two column names: .. code:: ipython3 df3 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 'salary': [70000, 80000, 120000, 90000]}) display('df1', 'df3', 'pd.merge(df1, df3, left_on="employee", right_on="name")') .. raw:: html

df1

employee group
0 Bob Accounting
1 Jake Engineering
2 Lisa Engineering
3 Sue HR

df3

name salary
0 Bob 70000
1 Jake 80000
2 Lisa 120000
3 Sue 90000

pd.merge(df1, df3, left_on="employee", right_on="name")

employee group name salary
0 Bob Accounting Bob 70000
1 Jake Engineering Jake 80000
2 Lisa Engineering Lisa 120000
3 Sue HR Sue 90000
The result has a redundant column that we can drop if desired–for example, by using the ``drop()`` method of ``DataFrame``\ s: .. code:: ipython3 pd.merge(df1, df3, left_on="employee", right_on="name").drop('name', axis=1) .. raw:: html
employee group salary
0 Bob Accounting 70000
1 Jake Engineering 80000
2 Lisa Engineering 120000
3 Sue HR 90000
The ``left_index`` and ``right_index`` keywords ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Sometimes, rather than merging on a column, you would instead like to merge on an index. For example, your data might look like this: .. code:: ipython3 df1.set_index? .. code:: ipython3 df1a = df1.set_index([ 'group', 'employee']) df1a .. raw:: html
group employee
Accounting Bob
Engineering Jake
Lisa
HR Sue
.. code:: ipython3 df1a = df1.set_index(['employee', 'group']) df2a = df2.set_index('employee') display('df1a', 'df2a') .. raw:: html

df1a

group
employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a

hire_date
employee
Lisa 2004
Bob 2008
Jake 2012
Sue 2014
You can use the index as the key for merging by specifying the ``left_index`` and/or ``right_index`` flags in ``pd.merge()``: .. code:: ipython3 display('df1a', 'df2a', "pd.merge(df1a, df2a, left_index=True, right_index=True)") .. raw:: html

df1a

group
employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a

hire_date
employee
Lisa 2004
Bob 2008
Jake 2012
Sue 2014

pd.merge(df1a, df2a, left_index=True, right_index=True)

group hire_date
employee
Bob Accounting 2008
Jake Engineering 2012
Lisa Engineering 2004
Sue HR 2014
.. code:: ipython3 df1a, df2a, pd.merge(df1a, df2a, left_index=True, right_index=True) .. parsed-literal:: ( group employee Bob Accounting Jake Engineering Lisa Engineering Sue HR, hire_date employee Lisa 2004 Bob 2008 Jake 2012 Sue 2014, group hire_date employee Bob Accounting 2008 Jake Engineering 2012 Lisa Engineering 2004 Sue HR 2014) For convenience, ``DataFrame``\ s implement the ``join()`` method, which performs a merge that defaults to joining on indices: .. code:: ipython3 display('df1a', 'df2a', 'df1a.join(df2a)') .. raw:: html

df1a

group
employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df2a

hire_date
employee
Lisa 2004
Bob 2008
Jake 2012
Sue 2014

df1a.join(df2a)

group hire_date
employee
Bob Accounting 2008
Jake Engineering 2012
Lisa Engineering 2004
Sue HR 2014
If you’d like to mix indices and columns, you can combine ``left_index`` with ``right_on`` or ``left_on`` with ``right_index`` to get the desired behavior: .. code:: ipython3 display('df1a', 'df3', "pd.merge(df1a, df3, left_index=True, right_on='name')") .. raw:: html

df1a

group
employee
Bob Accounting
Jake Engineering
Lisa Engineering
Sue HR

df3

name salary
0 Bob 70000
1 Jake 80000
2 Lisa 120000
3 Sue 90000

pd.merge(df1a, df3, left_index=True, right_on='name')

group name salary
0 Accounting Bob 70000
1 Engineering Jake 80000
2 Engineering Lisa 120000
3 HR Sue 90000
Specifying Set Arithmetic for Joins ----------------------------------- We have glossed over one important consideration in performing a join: the type of set arithmetic used in the join. This comes up when a value appears in one key column but not the other: .. code:: ipython3 df6 = pd.DataFrame({'name': ['Peter', 'Paul', 'Mary'], 'food': ['fish', 'beans', 'bread']}, columns=['name', 'food']) df7 = pd.DataFrame({'name': ['Mary', 'Joseph'], 'drink': ['wine', 'beer']}, columns=['name', 'drink']) display('df6', 'df7', 'pd.merge(df6, df7)') .. raw:: html

df6

name food
0 Peter fish
1 Paul beans
2 Mary bread

df7

name drink
0 Mary wine
1 Joseph beer

pd.merge(df6, df7)

name food drink
0 Mary bread wine
Here we have merged two datasets that have only a single “name” entry in common: Mary. By default, the result contains the *intersection* of the two sets of inputs; this is what is known as an *inner join*. We can specify this explicitly using the ``how`` keyword, which defaults to ``"inner"``: .. code:: ipython3 pd.merge(df6, df7, how='inner') .. raw:: html
name food drink
0 Mary bread wine
Other options for the ``how`` keyword are ``'outer'``, ``'left'``, and ``'right'``. An *outer join* returns a join over the union of the input columns, and fills in all missing values with NAs: .. code:: ipython3 display('df6', 'df7', "pd.merge(df6, df7, how='outer')") .. raw:: html

df6

name food
0 Peter fish
1 Paul beans
2 Mary bread

df7

name drink
0 Mary wine
1 Joseph beer

pd.merge(df6, df7, how='outer')

name food drink
0 Peter fish NaN
1 Paul beans NaN
2 Mary bread wine
3 Joseph NaN beer
The *left join* and *right join* return joins over the left entries and right entries, respectively: .. code:: ipython3 display('df6', 'df7', "pd.merge(df6, df7, how='left')") .. raw:: html

df6

name food
0 Peter fish
1 Paul beans
2 Mary bread

df7

name drink
0 Mary wine
1 Joseph beer

pd.merge(df6, df7, how='left')

name food drink
0 Peter fish NaN
1 Paul beans NaN
2 Mary bread wine
.. code:: ipython3 display('df6', 'df7', "pd.merge(df6, df7, how='right')") .. raw:: html

df6

name food
0 Peter fish
1 Paul beans
2 Mary bread

df7

name drink
0 Mary wine
1 Joseph beer

pd.merge(df6, df7, how='right')

name food drink
0 Mary bread wine
1 Joseph NaN beer
.. code:: ipython3 pd.merge? Overlapping Column Names: The ``suffixes`` Keyword -------------------------------------------------- Finally, you may end up in a case where your two input ``DataFrame``\ s have conflicting column names: .. code:: ipython3 df8 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 'rank': [1, 2, 3, 4]}) df9 = pd.DataFrame({'name': ['Bob', 'Jake', 'Lisa', 'Sue'], 'rank': [3, 1, 4, 2]}) display('df8', 'df9', 'pd.merge(df8, df9, on="name")') .. raw:: html

df8

name rank
0 Bob 1
1 Jake 2
2 Lisa 3
3 Sue 4

df9

name rank
0 Bob 3
1 Jake 1
2 Lisa 4
3 Sue 2

pd.merge(df8, df9, on="name")

name rank_x rank_y
0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4
3 Sue 4 2
Because the output would have two conflicting column names, the merge function automatically appends a suffix ``_x`` or ``_y`` to make the output columns unique. If these defaults are inappropriate, it is possible to specify a custom suffix using the ``suffixes`` keyword: .. code:: ipython3 display('df8', 'df9', 'pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])') .. raw:: html

df8

name rank
0 Bob 1
1 Jake 2
2 Lisa 3
3 Sue 4

df9

name rank
0 Bob 3
1 Jake 1
2 Lisa 4
3 Sue 2

pd.merge(df8, df9, on="name", suffixes=["_L", "_R"])

name rank_L rank_R
0 Bob 1 3
1 Jake 2 1
2 Lisa 3 4
3 Sue 4 2
Example: US States Data ----------------------- Merge and join operations come up most often when combining data from different sources. Here we will consider an example of some data about US states and their populations. The data files can be found at http://github.com/jakevdp/data-USstates/: .. code:: ipython3 pop = pd.read_csv('data/state-population.csv') areas = pd.read_csv('data/state-areas.csv') abbrevs = pd.read_csv('data/state-abbrevs.csv') display('pop.head()', 'areas.head()', 'abbrevs.head()') .. raw:: html

pop.head()

state/region ages year population
0 AL under18 2012 1117489.0
1 AL total 2012 4817528.0
2 AL under18 2010 1130966.0
3 AL total 2010 4785570.0
4 AL under18 2011 1125763.0

areas.head()

state area (sq. mi)
0 Alabama 52423
1 Alaska 656425
2 Arizona 114006
3 Arkansas 53182
4 California 163707

abbrevs.head()

state abbreviation
0 Alabama AL
1 Alaska AK
2 Arizona AZ
3 Arkansas AR
4 California CA
Given this information, say we want to compute a relatively straightforward result: rank US states and territories by their 2010 population density. We clearly have the data here to find this result, but we’ll have to combine the datasets to find the result. We’ll start with a many-to-one merge that will give us the full state name within the population ``DataFrame``. We want to merge based on the ``state/region`` column of ``pop``, and the ``abbreviation`` column of ``abbrevs``. We’ll use ``how='outer'`` to make sure no data is thrown away due to mismatched labels. .. code:: ipython3 merged = pd.merge(pop, abbrevs, how='outer', left_on='state/region', right_on='abbreviation') merged = merged.drop('abbreviation', 1) # drop duplicate info merged.head() .. raw:: html
state/region ages year population state
0 AL under18 2012 1117489.0 Alabama
1 AL total 2012 4817528.0 Alabama
2 AL under18 2010 1130966.0 Alabama
3 AL total 2010 4785570.0 Alabama
4 AL under18 2011 1125763.0 Alabama
Let’s double-check whether there were any mismatches here, which we can do by looking for rows with nulls: .. code:: ipython3 merged.isnull().any() .. parsed-literal:: state/region False ages False year False population True state True dtype: bool Some of the ``population`` info is null: .. code:: ipython3 merged[merged['population'].isnull()].head() .. raw:: html
state/region ages year population state
2448 PR under18 1990 NaN NaN
2449 PR total 1990 NaN NaN
2450 PR total 1991 NaN NaN
2451 PR under18 1991 NaN NaN
2452 PR total 1993 NaN NaN
It appears that all the null population values are from Puerto Rico prior to the year 2000; this is likely due to this data not being available from the original source. More importantly, we see also that some of the new ``state`` entries are also null, which means that there was no corresponding entry in the ``abbrevs`` key! Let’s figure out which regions lack this match: .. code:: ipython3 merged.loc[merged['state'].isnull(), 'state/region'].unique() .. parsed-literal:: array(['PR', 'USA'], dtype=object) We can quickly infer the issue: our population data includes entries for Puerto Rico (PR) and the United States as a whole (USA), while these entries do not appear in the state abbreviation key. We can fix these quickly by filling in appropriate entries: .. code:: ipython3 merged.loc[merged['state/region'] == 'PR', 'state'] = 'Puerto Rico' merged.loc[merged['state/region'] == 'USA', 'state'] = 'United States' merged.isnull().any() .. parsed-literal:: state/region False ages False year False population True state False dtype: bool No more nulls in the ``state`` column: we’re all set! Now we can merge the result with the area data using a similar procedure. Examining our results, we will want to join on the ``state`` column in both: .. code:: ipython3 final = pd.merge(merged, areas, on='state', how='left') final.head() .. raw:: html
state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0
Again, let’s check for nulls to see if there were any mismatches: .. code:: ipython3 final.isnull().any() .. parsed-literal:: state/region False ages False year False population True state False area (sq. mi) True dtype: bool There are nulls in the ``area`` column; we can take a look to see which regions were ignored here: .. code:: ipython3 final['state'][final['area (sq. mi)'].isnull()].unique() .. parsed-literal:: array(['United States'], dtype=object) We see that our ``areas`` ``DataFrame`` does not contain the area of the United States as a whole. We could insert the appropriate value (using the sum of all state areas, for instance), but in this case we’ll just drop the null values because the population density of the entire United States is not relevant to our current discussion: .. code:: ipython3 final.dropna(inplace=True) final.head() .. raw:: html
state/region ages year population state area (sq. mi)
0 AL under18 2012 1117489.0 Alabama 52423.0
1 AL total 2012 4817528.0 Alabama 52423.0
2 AL under18 2010 1130966.0 Alabama 52423.0
3 AL total 2010 4785570.0 Alabama 52423.0
4 AL under18 2011 1125763.0 Alabama 52423.0
Now we have all the data we need. To answer the question of interest, let’s first select the portion of the data corresponding with the year 2000, and the total population. We’ll use the ``query()`` function to do this quickly: .. code:: ipython3 data2010 = final.query("year == 2010 & ages == 'total'") data2010.head() .. raw:: html
state/region ages year population state area (sq. mi)
3 AL total 2010 4785570.0 Alabama 52423.0
91 AK total 2010 713868.0 Alaska 656425.0
101 AZ total 2010 6408790.0 Arizona 114006.0
189 AR total 2010 2922280.0 Arkansas 53182.0
197 CA total 2010 37333601.0 California 163707.0
Now let’s compute the population density and display it in order. We’ll start by re-indexing our data on the state, and then compute the result: .. code:: ipython3 data2010.set_index('state', inplace=True) density = data2010['population'] / data2010['area (sq. mi)'] .. code:: ipython3 density.sort_values(ascending=False, inplace=True) density.head() .. parsed-literal:: state District of Columbia 8898.897059 Puerto Rico 1058.665149 New Jersey 1009.253268 Rhode Island 681.339159 Connecticut 645.600649 dtype: float64 The result is a ranking of US states plus Washington, DC, and Puerto Rico in order of their 2010 population density, in residents per square mile. We can see that by far the densest region in this dataset is Washington, DC (i.e., the District of Columbia); among states, the densest is New Jersey. We can also check the end of the list: .. code:: ipython3 density.tail() .. parsed-literal:: state South Dakota 10.583512 North Dakota 9.537565 Montana 6.736171 Wyoming 5.768079 Alaska 1.087509 dtype: float64 We see that the least dense state, by far, is Alaska, averaging slightly over one resident per square mile. This type of messy data merging is a common task when trying to answer questions using real-world data sources. Aggregation and Grouping ======================== An essential piece of analysis of large data is efficient summarization: computing aggregations like ``sum()``, ``mean()``, ``median()``, ``min()``, and ``max()``, in which a single number gives insight into the nature of a potentially large dataset. we’ll use the same ``display`` magic function as usual: .. code:: ipython3 class display(object): """Display HTML representation of multiple objects""" template = """

{0}

{1}
""" def __init__(self, *args): self.args = args def _repr_html_(self): return '\n'.join(self.template.format(a, eval(a)._repr_html_()) for a in self.args) def __repr__(self): return '\n\n'.join(a + '\n' + repr(eval(a)) for a in self.args) Planets Data ------------ Here we will use the Planets dataset, available via the `Seaborn package `__. It gives information on planets that astronomers have discovered around other stars (known as *extrasolar planets* or *exoplanets* for short). It can be downloaded with a simple Seaborn command: .. code:: ipython3 import seaborn as sns planets = sns.load_dataset('planets') planets.shape # 1,000+ extrasolar planets discovered up to 2014. :: --------------------------------------------------------------------------- SSLCertVerificationError Traceback (most recent call last) /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in do_open(self, http_class, req, **http_conn_args) 1341 try: -> 1342 h.request(req.get_method(), req.selector, req.data, headers, 1343 encode_chunked=req.has_header('Transfer-encoding')) /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in request(self, method, url, body, headers, encode_chunked) 1254 """Send a complete request to the server.""" -> 1255 self._send_request(method, url, body, headers, encode_chunked) 1256 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in _send_request(self, method, url, body, headers, encode_chunked) 1300 body = _encode(body, 'body') -> 1301 self.endheaders(body, encode_chunked=encode_chunked) 1302 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in endheaders(self, message_body, encode_chunked) 1249 raise CannotSendHeader() -> 1250 self._send_output(message_body, encode_chunked=encode_chunked) 1251 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in _send_output(self, message_body, encode_chunked) 1009 del self._buffer[:] -> 1010 self.send(msg) 1011 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in send(self, data) 949 if self.auto_open: --> 950 self.connect() 951 else: /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/http/client.py in connect(self) 1423 -> 1424 self.sock = self._context.wrap_socket(self.sock, 1425 server_hostname=server_hostname) /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/ssl.py in wrap_socket(self, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname, session) 499 # ctx._wrap_socket() --> 500 return self.sslsocket_class._create( 501 sock=sock, /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/ssl.py in _create(cls, sock, server_side, do_handshake_on_connect, suppress_ragged_eofs, server_hostname, context, session) 1039 raise ValueError("do_handshake_on_connect should not be specified for non-blocking sockets") -> 1040 self.do_handshake() 1041 except (OSError, ValueError): /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/ssl.py in do_handshake(self, block) 1308 self.settimeout(None) -> 1309 self._sslobj.do_handshake() 1310 finally: SSLCertVerificationError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get local issuer certificate (_ssl.c:1122) During handling of the above exception, another exception occurred: URLError Traceback (most recent call last) in 1 import seaborn as sns ----> 2 planets = sns.load_dataset('planets') 3 planets.shape # 1,000+ extrasolar planets discovered up to 2014. ~/Developer/py-venvs/sphinx-venv/lib/python3.9/site-packages/seaborn/utils.py in load_dataset(name, cache, data_home, **kws) 483 os.path.basename(full_path)) 484 if not os.path.exists(cache_path): --> 485 if name not in get_dataset_names(): 486 raise ValueError(f"'{name}' is not one of the example datasets.") 487 urlretrieve(full_path, cache_path) ~/Developer/py-venvs/sphinx-venv/lib/python3.9/site-packages/seaborn/utils.py in get_dataset_names() 417 """ 418 url = "https://github.com/mwaskom/seaborn-data" --> 419 with urlopen(url) as resp: 420 html = resp.read() 421 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in urlopen(url, data, timeout, cafile, capath, cadefault, context) 212 else: 213 opener = _opener --> 214 return opener.open(url, data, timeout) 215 216 def install_opener(opener): /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in open(self, fullurl, data, timeout) 515 516 sys.audit('urllib.Request', req.full_url, req.data, req.headers, req.get_method()) --> 517 response = self._open(req, data) 518 519 # post-process response /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in _open(self, req, data) 532 533 protocol = req.type --> 534 result = self._call_chain(self.handle_open, protocol, protocol + 535 '_open', req) 536 if result: /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in _call_chain(self, chain, kind, meth_name, *args) 492 for handler in handlers: 493 func = getattr(handler, meth_name) --> 494 result = func(*args) 495 if result is not None: 496 return result /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in https_open(self, req) 1383 1384 def https_open(self, req): -> 1385 return self.do_open(http.client.HTTPSConnection, req, 1386 context=self._context, check_hostname=self._check_hostname) 1387 /Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/urllib/request.py in do_open(self, http_class, req, **http_conn_args) 1343 encode_chunked=req.has_header('Transfer-encoding')) 1344 except OSError as err: # timeout error -> 1345 raise URLError(err) 1346 r = h.getresponse() 1347 except: URLError: .. code:: ipython3 planets.head() Simple Aggregation in Pandas ---------------------------- .. code:: ipython3 rng = np.random.RandomState(42) ser = pd.Series(rng.rand(5)) ser .. parsed-literal:: 0 0.374540 1 0.950714 2 0.731994 3 0.598658 4 0.156019 dtype: float64 .. code:: ipython3 ser.sum(), ser.mean() .. parsed-literal:: (2.811925491708157, 0.5623850983416314) For a ``DataFrame``, by default the aggregates return results within each column: .. code:: ipython3 df = pd.DataFrame({'A': rng.rand(5), 'B': rng.rand(5)}) df .. raw:: html
A B
0 0.183405 0.611853
1 0.304242 0.139494
2 0.524756 0.292145
3 0.431945 0.366362
4 0.291229 0.456070
.. code:: ipython3 df.mean() .. parsed-literal:: A 0.347115 B 0.373185 dtype: float64 By specifying the ``axis`` argument, you can instead aggregate within each row: .. code:: ipython3 df.mean(axis='columns') .. parsed-literal:: 0 0.397629 1 0.221868 2 0.408451 3 0.399153 4 0.373650 dtype: float64 Pandas ``Series`` and ``DataFrame``\ s provide a convenience method ``describe()`` that computes several common aggregates for each column and returns the result: .. code:: ipython3 planets.dropna().describe() # dropping rows with missing values .. raw:: html
number orbital_period mass distance year
count 498.00000 498.000000 498.000000 498.000000 498.000000
mean 1.73494 835.778671 2.509320 52.068213 2007.377510
std 1.17572 1469.128259 3.636274 46.596041 4.167284
min 1.00000 1.328300 0.003600 1.350000 1989.000000
25% 1.00000 38.272250 0.212500 24.497500 2005.000000
50% 1.00000 357.000000 1.245000 39.940000 2009.000000
75% 2.00000 999.600000 2.867500 59.332500 2011.000000
max 6.00000 17337.500000 25.000000 354.000000 2014.000000
This can be a useful way to begin understanding the overall properties of a dataset. For example, we see in the ``year`` column that although exoplanets were discovered as far back as 1989, half of all known expolanets were not discovered until 2010 or after. This is largely thanks to the *Kepler* mission, which is a space-based telescope specifically designed for finding eclipsing planets around other stars. The following table summarizes some other built-in Pandas aggregations: ======================== =============================== Aggregation Description ======================== =============================== ``count()`` Total number of items ``first()``, ``last()`` First and last item ``mean()``, ``median()`` Mean and median ``min()``, ``max()`` Minimum and maximum ``std()``, ``var()`` Standard deviation and variance ``mad()`` Mean absolute deviation ``prod()`` Product of all items ``sum()`` Sum of all items ======================== =============================== These are all methods of ``DataFrame`` and ``Series`` objects. GroupBy: Split, Apply, Combine ------------------------------ Simple aggregations can give you a flavor of your dataset, but often we would prefer to aggregate conditionally on some label or index: this is implemented in the so-called ``groupby`` operation. The name “group by” comes from a command in the SQL database language, but it is perhaps more illuminative to think of it in the terms first coined by Hadley Wickham of Rstats fame: *split, apply, combine*. Split, apply, combine ~~~~~~~~~~~~~~~~~~~~~ A canonical example of this split-apply-combine operation, where the “apply” is a summation aggregation, is illustrated in this figure: .. image:: images/03.08-split-apply-combine.png This makes clear what the ``groupby`` accomplishes: - The *split* step involves breaking up and grouping a ``DataFrame`` depending on the value of the specified key. - The *apply* step involves computing some function, usually an aggregate, transformation, or filtering, within the individual groups. - The *combine* step merges the results of these operations into an output array. While this could certainly be done manually using some combination of the masking, aggregation, and merging commands covered earlier, an important realization is that *the intermediate splits do not need to be explicitly instantiated*. Rather, the ``GroupBy`` can (often) do this in a single pass over the data, updating the sum, mean, count, min, or other aggregate for each group along the way. The power of the ``GroupBy`` is that it abstracts away these steps: the user need not think about *how* the computation is done under the hood, but rather thinks about the *operation as a whole*. As a concrete example, let’s take a look at using Pandas for the computation shown in this diagram: .. code:: ipython3 df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 'data': range(6)}, columns=['key', 'data']) df .. raw:: html
key data
0 A 0
1 B 1
2 C 2
3 A 3
4 B 4
5 C 5
The most basic split-apply-combine operation can be computed with the ``groupby()`` method of ``DataFrame``\ s, passing the name of the desired key column: .. code:: ipython3 df.groupby('key') .. parsed-literal:: Notice that what is returned is not a set of ``DataFrame``\ s, but a ``DataFrameGroupBy`` object. This object is where the magic is: you can think of it as a special view of the ``DataFrame``, which is poised to dig into the groups but does no actual computation until the aggregation is applied. This *lazy evaluation* approach means that common aggregates can be implemented very efficiently in a way that is almost transparent to the user. To produce a result, we can apply an aggregate to this ``DataFrameGroupBy`` object, which will perform the appropriate apply/combine steps to produce the desired result: .. code:: ipython3 df.groupby('key').sum() .. raw:: html
data
key
A 3
B 5
C 7
.. code:: ipython3 type(_) .. parsed-literal:: pandas.core.frame.DataFrame The ``sum()`` method is just one possibility here; you can apply virtually any common Pandas or NumPy aggregation function, as well as virtually any valid ``DataFrame`` operation. The GroupBy object ~~~~~~~~~~~~~~~~~~ The ``GroupBy`` object is a very flexible abstraction. In many ways, you can simply treat it as if it’s a collection of ``DataFrame``\ s, and it does the difficult things under the hood. Let’s see some examples using the Planets data. Perhaps the most important operations made available by a ``GroupBy`` are *aggregate*, *filter*, *transform*, and *apply* but before that let’s introduce some of the other functionality that can be used with the basic ``GroupBy`` operation. Column indexing ^^^^^^^^^^^^^^^ The ``GroupBy`` object supports column indexing in the same way as the ``DataFrame``, and returns a modified ``GroupBy`` object: .. code:: ipython3 planets.groupby('method') .. parsed-literal:: .. code:: ipython3 planets.groupby('method')['orbital_period'] .. parsed-literal:: Here we’ve selected a particular ``Series`` group from the original ``DataFrame`` group by reference to its column name. As with the ``GroupBy`` object, no computation is done until we call some aggregate on the object: .. code:: ipython3 planets.groupby('method')['orbital_period'].median() .. parsed-literal:: method Astrometry 631.180000 Eclipse Timing Variations 4343.500000 Imaging 27500.000000 Microlensing 3300.000000 Orbital Brightness Modulation 0.342887 Pulsar Timing 66.541900 Pulsation Timing Variations 1170.000000 Radial Velocity 360.200000 Transit 5.714932 Transit Timing Variations 57.011000 Name: orbital_period, dtype: float64 Iteration over groups ^^^^^^^^^^^^^^^^^^^^^ The ``GroupBy`` object supports direct iteration over the groups, returning each group as a ``Series`` or ``DataFrame``: .. code:: ipython3 for (method, group) in planets.groupby('method'): print("{0:30s} shape={1}".format(method, group.shape)) .. parsed-literal:: Astrometry shape=(2, 6) Eclipse Timing Variations shape=(9, 6) Imaging shape=(38, 6) Microlensing shape=(23, 6) Orbital Brightness Modulation shape=(3, 6) Pulsar Timing shape=(5, 6) Pulsation Timing Variations shape=(1, 6) Radial Velocity shape=(553, 6) Transit shape=(397, 6) Transit Timing Variations shape=(4, 6) Dispatch methods ^^^^^^^^^^^^^^^^ Through some Python class magic, any method not explicitly implemented by the ``GroupBy`` object will be passed through and called on the groups, whether they are ``DataFrame`` or ``Series`` objects. For example, you can use the ``describe()`` method of ``DataFrame``\ s to perform a set of aggregations that describe each group in the data: .. code:: ipython3 planets.groupby('method')['year'].describe() .. raw:: html
count mean std min 25% 50% 75% max
method
Astrometry 2.0 2011.500000 2.121320 2010.0 2010.75 2011.5 2012.25 2013.0
Eclipse Timing Variations 9.0 2010.000000 1.414214 2008.0 2009.00 2010.0 2011.00 2012.0
Imaging 38.0 2009.131579 2.781901 2004.0 2008.00 2009.0 2011.00 2013.0
Microlensing 23.0 2009.782609 2.859697 2004.0 2008.00 2010.0 2012.00 2013.0
Orbital Brightness Modulation 3.0 2011.666667 1.154701 2011.0 2011.00 2011.0 2012.00 2013.0
Pulsar Timing 5.0 1998.400000 8.384510 1992.0 1992.00 1994.0 2003.00 2011.0
Pulsation Timing Variations 1.0 2007.000000 NaN 2007.0 2007.00 2007.0 2007.00 2007.0
Radial Velocity 553.0 2007.518987 4.249052 1989.0 2005.00 2009.0 2011.00 2014.0
Transit 397.0 2011.236776 2.077867 2002.0 2010.00 2012.0 2013.00 2014.0
Transit Timing Variations 4.0 2012.500000 1.290994 2011.0 2011.75 2012.5 2013.25 2014.0
Looking at this table helps us to better understand the data: for example, the vast majority of planets have been discovered by the Radial Velocity and Transit methods, though the latter only became common (due to new, more accurate telescopes) in the last decade. The newest methods seem to be Transit Timing Variation and Orbital Brightness Modulation, which were not used to discover a new planet until 2011. This is just one example of the utility of dispatch methods. Notice that they are applied *to each individual group*, and the results are then combined within ``GroupBy`` and returned. Again, any valid ``DataFrame``/``Series`` method can be used on the corresponding ``GroupBy`` object, which allows for some very flexible and powerful operations! Aggregate, filter, transform, apply ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``GroupBy`` objects have ``aggregate()``, ``filter()``, ``transform()``, and ``apply()`` methods that efficiently implement a variety of useful operations before combining the grouped data. .. code:: ipython3 rng = np.random.RandomState(0) df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 'data1': range(6), 'data2': rng.randint(0, 10, 6)}, columns = ['key', 'data1', 'data2']) df .. raw:: html
key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9
Aggregation ^^^^^^^^^^^ We’re now familiar with ``GroupBy`` aggregations with ``sum()``, ``median()``, and the like, but the ``aggregate()`` method allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all the aggregates at once. .. code:: ipython3 df.groupby('key').aggregate([min, np.median, max]) .. raw:: html
data1 data2
min median max min median max
key
A 0 1.5 3 3 4.0 5
B 1 2.5 4 0 3.5 7
C 2 3.5 5 3 6.0 9
Filtering ^^^^^^^^^ A filtering operation allows you to drop data based on the group properties. For example, we might want to keep all groups in which the standard deviation is larger than some critical value: .. code:: ipython3 def filter_func(x): return x['data2'].std() > 4 display('df', "df.groupby('key').std()", "df.groupby('key').filter(filter_func)") .. raw:: html

df

key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby('key').std()

data1 data2
key
A 2.12132 1.414214
B 2.12132 4.949747
C 2.12132 4.242641

df.groupby('key').filter(filter_func)

key data1 data2
1 B 1 0
2 C 2 3
4 B 4 7
5 C 5 9
Transformation ^^^^^^^^^^^^^^ While aggregation must return a reduced version of the data, transformation can return some transformed version of the full data to recombine. For such a transformation, the output is the same shape as the input. .. code:: ipython3 df.groupby('key').transform(lambda x: x - x.mean()) .. raw:: html
data1 data2
0 -1.5 1.0
1 -1.5 -3.5
2 -1.5 -3.0
3 1.5 -1.0
4 1.5 3.5
5 1.5 3.0
The apply() method ^^^^^^^^^^^^^^^^^^ The ``apply()`` method lets you apply an arbitrary function to the group results. The function should take a ``DataFrame``, and return either a Pandas object (e.g., ``DataFrame``, ``Series``) or a scalar; the combine operation will be tailored to the type of output returned. .. code:: ipython3 def norm_by_data2(x): # x is a DataFrame of group values x['data1'] /= x['data2'].sum() return x display('df', "df.groupby('key').apply(norm_by_data2)") .. raw:: html

df

key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby('key').apply(norm_by_data2)

key data1 data2
0 A 0.000000 5
1 B 0.142857 0
2 C 0.166667 3
3 A 0.375000 3
4 B 0.571429 7
5 C 0.416667 9
Specifying the split key ~~~~~~~~~~~~~~~~~~~~~~~~ In the simple examples presented before, we split the ``DataFrame`` on a single column name. This is just one of many options by which the groups can be defined, and we’ll go through some other options for group specification here. A list, array, series, or index providing the grouping keys ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The key can be any series or list with a length matching that of the ``DataFrame``: .. code:: ipython3 L = [0, 1, 0, 1, 2, 0] display('df', 'df.groupby(L).sum()') .. raw:: html

df

key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby(L).sum()

data1 data2
0 7 17
1 4 3
2 4 7
Of course, this means there’s another, more verbose way of accomplishing the ``df.groupby('key')`` from before: .. code:: ipython3 display('df', "df.groupby(df['key']).sum()") .. raw:: html

df

key data1 data2
0 A 0 5
1 B 1 0
2 C 2 3
3 A 3 3
4 B 4 7
5 C 5 9

df.groupby(df['key']).sum()

data1 data2
key
A 3 8
B 5 7
C 7 12
A dictionary or series mapping index to group ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Another method is to provide a dictionary that maps index values to the group keys: .. code:: ipython3 df2 = df.set_index('key') mapping = {'A': 'vowel', 'B': 'consonant', 'C': 'consonant'} display('df2', 'df2.groupby(mapping).sum()') .. raw:: html

df2

data1 data2
key
A 0 5
B 1 0
C 2 3
A 3 3
B 4 7
C 5 9

df2.groupby(mapping).sum()

data1 data2
consonant 12 19
vowel 3 8
Any Python function ^^^^^^^^^^^^^^^^^^^ Similar to mapping, you can pass any Python function that will input the index value and output the group: .. code:: ipython3 display('df2', 'df2.groupby(str.lower).mean()') .. raw:: html

df2

data1 data2
key
A 0 5
B 1 0
C 2 3
A 3 3
B 4 7
C 5 9

df2.groupby(str.lower).mean()

data1 data2
a 1.5 4.0
b 2.5 3.5
c 3.5 6.0
A list of valid keys ^^^^^^^^^^^^^^^^^^^^ Further, any of the preceding key choices can be combined to group on a multi-index: .. code:: ipython3 df2.groupby([str.lower, mapping]).mean() .. raw:: html
data1 data2
a vowel 1.5 4.0
b consonant 2.5 3.5
c consonant 3.5 6.0
Grouping example ~~~~~~~~~~~~~~~~ As an example of this, in a couple lines of Python code we can put all these together and count discovered planets by method and by decade: .. code:: ipython3 decade = 10 * (planets['year'] // 10) decade = decade.astype(str) + 's' decade.name = 'decade' planets.groupby(['method', decade])['number'].sum().unstack().fillna(0) .. raw:: html
decade 1980s 1990s 2000s 2010s
method
Astrometry 0.0 0.0 0.0 2.0
Eclipse Timing Variations 0.0 0.0 5.0 10.0
Imaging 0.0 0.0 29.0 21.0
Microlensing 0.0 0.0 12.0 15.0
Orbital Brightness Modulation 0.0 0.0 0.0 5.0
Pulsar Timing 0.0 9.0 1.0 1.0
Pulsation Timing Variations 0.0 0.0 1.0 0.0
Radial Velocity 1.0 52.0 475.0 424.0
Transit 0.0 0.0 64.0 712.0
Transit Timing Variations 0.0 0.0 0.0 9.0
This shows the power of combining many of the operations we’ve discussed up to this point when looking at realistic datasets. We immediately gain a coarse understanding of when and how planets have been discovered over the past several decades! Pivot Tables ============ We have seen how the ``GroupBy`` abstraction lets us explore relationships within a dataset. A *pivot table* is a similar operation that is commonly seen in spreadsheets and other programs that operate on tabular data: - The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional table that provides a multidimensional summarization of the data. - The difference between pivot tables and ``GroupBy`` can sometimes cause confusion; it helps me to think of pivot tables as essentially a *multidimensional* version of ``GroupBy`` aggregation. - That is, you split-apply-combine, but both the split and the combine happen across not a one-dimensional index, but across a two-dimensional grid. Motivating Pivot Tables ----------------------- We’ll use the database of passengers on the *Titanic*, available through the Seaborn library: .. code:: ipython3 import seaborn as sns titanic = sns.load_dataset('titanic') titanic.head() .. raw:: html
survived pclass sex age sibsp parch fare embarked class who adult_male deck embark_town alive alone
0 0 3 male 22.0 1 0 7.2500 S Third man True NaN Southampton no False
1 1 1 female 38.0 1 0 71.2833 C First woman False C Cherbourg yes False
2 1 3 female 26.0 0 0 7.9250 S Third woman False NaN Southampton yes True
3 1 1 female 35.0 1 0 53.1000 S First woman False C Southampton yes False
4 0 3 male 35.0 0 0 8.0500 S Third man True NaN Southampton no True
Pivot Tables by Hand -------------------- To start learning more about this data, we might begin by grouping according to gender, survival status, or some combination thereof. If you have read the previous section, you might be tempted to apply a ``GroupBy`` operation–for example, let’s look at survival rate by gender: .. code:: ipython3 titanic.groupby('sex')[['survived']].mean() .. raw:: html
survived
sex
female 0.742038
male 0.188908
This immediately gives us some insight: overall, three of every four females on board survived, while only one in five males survived. This is useful, but we might like to go one step deeper and look at survival by both sex and, say, class. Using the vocabulary of ``GroupBy``, we might proceed using something like this: we *group by* class and gender, *select* survival, *apply* a mean aggregate, *combine* the resulting groups, and then *unstack* the hierarchical index to reveal the hidden multidimensionality. In code: .. code:: ipython3 titanic.groupby(['sex', 'class'])['survived'].aggregate('mean').unstack() .. raw:: html
class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447
This gives us a better idea of how both gender and class affected survival, but the code is starting to look a bit garbled. While each step of this pipeline makes sense in light of the tools we’ve previously discussed, the long string of code is not particularly easy to read or use. This two-dimensional ``GroupBy`` is common enough that Pandas includes a convenience routine, ``pivot_table``, which succinctly handles this type of multi-dimensional aggregation. Pivot Table Syntax ------------------ Here is the equivalent to the preceding operation using the ``pivot_table`` method of ``DataFrame``\ s: .. code:: ipython3 titanic.pivot_table('survived', index='sex', columns='class') .. raw:: html
class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447
This is eminently more readable than the ``groupby`` approach, and produces the same result. As you might expect of an early 20th-century transatlantic cruise, the survival gradient favors both women and higher classes. First-class women survived with near certainty (hi, Rose!), while only one in ten third-class men survived (sorry, Jack!). Multi-level pivot tables ~~~~~~~~~~~~~~~~~~~~~~~~ Just as in the ``GroupBy``, the grouping in pivot tables can be specified with multiple levels, and via a number of options. For example, we might be interested in looking at age as a third dimension. We’ll bin the age using the ``pd.cut`` function: .. code:: ipython3 age = pd.cut(titanic['age'], [0, 18, 80]) titanic.pivot_table('survived', ['sex', age], 'class') .. raw:: html
class First Second Third
sex age
female (0, 18] 0.909091 1.000000 0.511628
(18, 80] 0.972973 0.900000 0.423729
male (0, 18] 0.800000 0.600000 0.215686
(18, 80] 0.375000 0.071429 0.133663
We can apply the same strategy when working with the columns as well; let’s add info on the fare paid using ``pd.qcut`` to automatically compute quantiles: .. code:: ipython3 fare = pd.qcut(titanic['fare'], 2) titanic.pivot_table('survived', ['sex', age], [fare, 'class']) .. raw:: html
fare (-0.001, 14.454] (14.454, 512.329]
class First Second Third First Second Third
sex age
female (0, 18] NaN 1.000000 0.714286 0.909091 1.000000 0.318182
(18, 80] NaN 0.880000 0.444444 0.972973 0.914286 0.391304
male (0, 18] NaN 0.000000 0.260870 0.800000 0.818182 0.178571
(18, 80] 0.0 0.098039 0.125000 0.391304 0.030303 0.192308
The result is a four-dimensional aggregation with hierarchical indices, shown in a grid demonstrating the relationship between the values. Additional pivot table options ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The full call signature of the ``pivot_table`` method of ``DataFrame``\ s is as follows: .. code:: python # call signature as of Pandas 0.18 DataFrame.pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All') We’ve already seen examples of the first three arguments; here we’ll take a quick look at the remaining ones. Two of the options, ``fill_value`` and ``dropna``, have to do with missing data and are fairly straightforward; we will not show examples of them here. The ``aggfunc`` keyword controls what type of aggregation is applied, which is a mean by default. As in the GroupBy, the aggregation specification can be a string representing one of several common choices (e.g., ``'sum'``, ``'mean'``, ``'count'``, ``'min'``, ``'max'``, etc.) or a function that implements an aggregation (e.g., ``np.sum()``, ``min()``, ``sum()``, etc.). Additionally, it can be specified as a dictionary mapping a column to any of the above desired options: .. code:: ipython3 titanic.pivot_table(index='sex', columns='class', aggfunc={'survived':sum, 'fare':'mean'}) .. raw:: html
fare survived
class First Second Third First Second Third
sex
female 106.125798 21.970121 16.118810 91 70 72
male 67.226127 19.741782 12.661633 45 17 47
Notice also here that we’ve omitted the ``values`` keyword; when specifying a mapping for ``aggfunc``, this is determined automatically. At times it’s useful to compute totals along each grouping. This can be done via the ``margins`` keyword: .. code:: ipython3 titanic.pivot_table('survived', index='sex', columns='class', margins=True) .. raw:: html
class First Second Third All
sex
female 0.968085 0.921053 0.500000 0.742038
male 0.368852 0.157407 0.135447 0.188908
All 0.629630 0.472826 0.242363 0.383838
Here this automatically gives us information about the class-agnostic survival rate by gender, the gender-agnostic survival rate by class, and the overall survival rate of 38%. The margin label can be specified with the ``margins_name`` keyword, which defaults to ``"All"``. Example: Birthrate Data ----------------------- As a more interesting example, let’s take a look at the freely available data on births in the United States, provided by the Centers for Disease Control (CDC). This data can be found at https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv: .. code:: ipython3 !curl -O https://raw.githubusercontent.com/jakevdp/data-CDCbirths/master/births.csv .. parsed-literal:: % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 258k 100 258k 0 0 258k 0 --:--:-- --:--:-- --:--:-- 258k .. code:: ipython3 births = pd.read_csv('data/births.csv') births.describe() .. raw:: html
year month day births
count 15547.000000 15547.000000 15067.000000 15547.000000
mean 1979.037435 6.515919 17.769894 9762.293561
std 6.728340 3.449632 15.284034 28552.465810
min 1969.000000 1.000000 1.000000 1.000000
25% 1974.000000 4.000000 8.000000 4358.000000
50% 1979.000000 7.000000 16.000000 4814.000000
75% 1984.000000 10.000000 24.000000 5289.500000
max 2008.000000 12.000000 99.000000 199622.000000
Taking a look at the data, we see that it’s relatively simple–it contains the number of births grouped by date and gender: .. code:: ipython3 births.head() .. raw:: html
year month day gender births
0 1969 1 1.0 F 4046
1 1969 1 1.0 M 4440
2 1969 1 2.0 F 4454
3 1969 1 2.0 M 4548
4 1969 1 3.0 F 4548
We can start to understand this data a bit more by using a pivot table. Let’s add a decade column, and take a look at male and female births as a function of decade: .. code:: ipython3 births['decade'] = 10 * (births['year'] // 10) births.pivot_table('births', index='decade', columns='gender', aggfunc='sum') .. raw:: html
gender F M
decade
1960 1753634 1846572
1970 16263075 17121550
1980 18310351 19243452
1990 19479454 20420553
2000 18229309 19106428
We immediately see that male births outnumber female births in every decade. To see this trend a bit more clearly, we can use the built-in plotting tools in Pandas to visualize the total number of births by year: .. code:: ipython3 %matplotlib inline import matplotlib.pyplot as plt sns.set() # use Seaborn styles births.pivot_table('births', index='year', columns='gender', aggfunc='sum').plot() plt.ylabel('total births per year'); .. image:: pandas_files/pandas_477_0.png With a simple pivot table and ``plot()`` method, we can immediately see the annual trend in births by gender. By eye, it appears that over the past 50 years male births have outnumbered female births by around 5%. Further data exploration ~~~~~~~~~~~~~~~~~~~~~~~~ Though this doesn’t necessarily relate to the pivot table, there are a few more interesting features we can pull out of this dataset using the Pandas tools covered up to this point. We must start by cleaning the data a bit, removing outliers caused by mistyped dates (e.g., June 31st) or missing values (e.g., June 99th). One easy way to remove these all at once is to cut outliers; we’ll do this via a robust sigma-clipping operation: .. code:: ipython3 quartiles = np.percentile(births['births'], [25, 50, 75]) mu = quartiles[1] sig = 0.74 * (quartiles[2] - quartiles[0]) This final line is a robust estimate of the sample mean, where the 0.74 comes from the interquartile range of a Gaussian distribution. With this we can use the ``query()`` method to filter-out rows with births outside these values: .. code:: ipython3 births = births.query('(births > @mu - 5 * @sig) & (births < @mu + 5 * @sig)') Next we set the ``day`` column to integers; previously it had been a string because some columns in the dataset contained the value ``'null'``: .. code:: ipython3 # set 'day' column to integer; it originally was a string due to nulls births['day'] = births['day'].astype(int) Finally, we can combine the day, month, and year to create a Date index. This allows us to quickly compute the weekday corresponding to each row: .. code:: ipython3 # create a datetime index from the year, month, day births.index = pd.to_datetime(10000 * births.year + 100 * births.month + births.day, format='%Y%m%d') births['dayofweek'] = births.index.dayofweek .. code:: ipython3 import matplotlib.pyplot as plt import matplotlib as mpl births.pivot_table('births', index='dayofweek', columns='decade', aggfunc='mean').plot() plt.gca().set_xticklabels(['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun']) plt.ylabel('mean births by day'); .. image:: pandas_files/pandas_488_0.png Apparently births are slightly less common on weekends than on weekdays! Note that the 1990s and 2000s are missing because the CDC data contains only the month of birth starting in 1989. Another intersting view is to plot the mean number of births by the day of the *year*. Let’s first group the data by month and day separately: .. code:: ipython3 births_by_date = births.pivot_table('births', [births.index.month, births.index.day]) births_by_date.head() .. raw:: html
births
1 1 4009.225
2 4247.400
3 4500.900
4 4571.350
5 4603.625
The result is a multi-index over months and days. To make this easily plottable, let’s turn these months and days into a date by associating them with a dummy year variable (making sure to choose a leap year so February 29th is correctly handled!) .. code:: ipython3 from datetime import datetime births_by_date.index = [datetime(2012, month, day) for (month, day) in births_by_date.index] births_by_date.head() .. raw:: html
births
2012-01-01 4009.225
2012-01-02 4247.400
2012-01-03 4500.900
2012-01-04 4571.350
2012-01-05 4603.625
Focusing on the month and day only, we now have a time series reflecting the average number of births by date of the year. From this, we can use the ``plot`` method to plot the data. It reveals some interesting trends: .. code:: ipython3 fig, ax = plt.subplots(figsize=(12, 4)) births_by_date.plot(ax=ax); .. image:: pandas_files/pandas_496_0.png In particular, the striking feature of this graph is the dip in birthrate on US holidays (e.g., Independence Day, Labor Day, Thanksgiving, Christmas, New Year’s Day) although this likely reflects trends in scheduled/induced births rather than some deep psychosomatic effect on natural births. Looking at this short example, you can see that many of the Python and Pandas tools we’ve seen to this point can be combined and used to gain insight from a variety of datasets. Working with Time Series ======================== Pandas was developed in the context of financial modeling, so as you might expect, it contains a fairly extensive set of tools for working with dates, times, and time-indexed data. Date and time data comes in a few flavors: - *Time stamps* reference particular moments in time (e.g., July 4th, 2015 at 7:00am). - *Time intervals* and *periods* reference a length of time between a particular beginning and end point; for example, the year 2015. Periods usually reference a special case of time intervals in which each interval is of uniform length and does not overlap (e.g., 24 hour-long periods comprising days). - *Time deltas* or *durations* reference an exact length of time (e.g., a duration of 22.56 seconds). Dates and Times in Python ------------------------- The Python world has a number of available representations of dates, times, deltas, and timespans. While the time series tools provided by Pandas tend to be the most useful for data science applications, it is helpful to see their relationship to other packages used in Python. Native Python dates and times: ``datetime`` and ``dateutil`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Python’s basic objects for working with dates and times reside in the built-in ``datetime`` module. Along with the third-party ``dateutil`` module, you can use it to quickly perform a host of useful functionalities on dates and times: .. code:: ipython3 from datetime import datetime datetime(year=2015, month=7, day=4) .. parsed-literal:: datetime.datetime(2015, 7, 4, 0, 0) Or, using the ``dateutil`` module, you can parse dates from a variety of string formats: .. code:: ipython3 from dateutil import parser date = parser.parse("4th of July, 2015") date .. parsed-literal:: datetime.datetime(2015, 7, 4, 0, 0) Once you have a ``datetime`` object, you can do things like printing the day of the week: .. code:: ipython3 date.strftime('%A') .. parsed-literal:: 'Saturday' A related package to be aware of is ```pytz`` `__, which contains tools for working with the most migrane-inducing piece of time series data: time zones. The power of ``datetime`` and ``dateutil`` lie in their flexibility and easy syntax: you can use these objects and their built-in methods to easily perform nearly any operation you might be interested in. Where they break down is when you wish to work with large arrays of dates and times: just as lists of Python numerical variables are suboptimal compared to NumPy-style typed numerical arrays, lists of Python datetime objects are suboptimal compared to typed arrays of encoded dates. Typed arrays of times: NumPy’s ``datetime64`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The weaknesses of Python’s datetime format inspired the NumPy team to add a set of native time series data type to NumPy. The ``datetime64`` dtype encodes dates as 64-bit integers, and thus allows arrays of dates to be represented very compactly. .. code:: ipython3 date = np.array('2015-07-04', dtype=np.datetime64) date .. parsed-literal:: array('2015-07-04', dtype='datetime64[D]') Once we have this date formatted, however, we can quickly do vectorized operations on it: .. code:: ipython3 date + np.arange(12) .. parsed-literal:: array(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11', '2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'], dtype='datetime64[D]') Because of the uniform type in NumPy ``datetime64`` arrays, this type of operation can be accomplished much more quickly than if we were working directly with Python’s ``datetime`` objects, especially as arrays get large. One detail of the ``datetime64`` and ``timedelta64`` objects is that they are built on a *fundamental time unit*. Because the ``datetime64`` object is limited to 64-bit precision, the range of encodable times is :math:`2^{64}` times this fundamental unit. In other words, ``datetime64`` imposes a trade-off between *time resolution* and *maximum time span*. If you want a time resolution of one nanosecond, you only have enough information to encode a range of :math:`2^{64}` nanoseconds, or just under 600 years: .. code:: ipython3 np.datetime64('2015-07-04') # a day-based datetime .. parsed-literal:: numpy.datetime64('2015-07-04') .. code:: ipython3 np.datetime64('2015-07-04 12:00') # a minute-based datetime .. parsed-literal:: numpy.datetime64('2015-07-04T12:00') .. code:: ipython3 np.datetime64('2015-07-04 12:59:59.50', 'ns') # a nanosecond-based datetiem .. parsed-literal:: numpy.datetime64('2015-07-04T12:59:59.500000000') The following table lists the available format codes along with the relative and absolute timespans that they can encode: ====== =========== ==================== ====================== Code Meaning Time span (relative) Time span (absolute) ====== =========== ==================== ====================== ``Y`` Year ± 9.2e18 years [9.2e18 BC, 9.2e18 AD] ``M`` Month ± 7.6e17 years [7.6e17 BC, 7.6e17 AD] ``W`` Week ± 1.7e17 years [1.7e17 BC, 1.7e17 AD] ``D`` Day ± 2.5e16 years [2.5e16 BC, 2.5e16 AD] ``h`` Hour ± 1.0e15 years [1.0e15 BC, 1.0e15 AD] ``m`` Minute ± 1.7e13 years [1.7e13 BC, 1.7e13 AD] ``s`` Second ± 2.9e12 years [ 2.9e9 BC, 2.9e9 AD] ``ms`` Millisecond ± 2.9e9 years [ 2.9e6 BC, 2.9e6 AD] ``us`` Microsecond ± 2.9e6 years [290301 BC, 294241 AD] ``ns`` Nanosecond ± 292 years [ 1678 AD, 2262 AD] ``ps`` Picosecond ± 106 days [ 1969 AD, 1970 AD] ``fs`` Femtosecond ± 2.6 hours [ 1969 AD, 1970 AD] ``as`` Attosecond ± 9.2 seconds [ 1969 AD, 1970 AD] ====== =========== ==================== ====================== Dates and times in pandas: best of both worlds ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Pandas builds upon all the tools just discussed to provide a ``Timestamp`` object, which combines the ease-of-use of ``datetime`` and ``dateutil`` with the efficient storage and vectorized interface of ``numpy.datetime64``. From a group of these ``Timestamp`` objects, Pandas can construct a ``DatetimeIndex`` that can be used to index data in a ``Series`` or ``DataFrame``: .. code:: ipython3 date = pd.to_datetime("4th of July, 2015") date .. parsed-literal:: Timestamp('2015-07-04 00:00:00') .. code:: ipython3 date.strftime('%A') .. parsed-literal:: 'Saturday' .. code:: ipython3 date + pd.to_timedelta(np.arange(12), 'D') # do NumPy-style vectorized operations directly on this same object .. parsed-literal:: DatetimeIndex(['2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10', '2015-07-11', '2015-07-12', '2015-07-13', '2015-07-14', '2015-07-15'], dtype='datetime64[ns]', freq=None) Pandas Time Series: Indexing by Time ------------------------------------ Where the Pandas time series tools really become useful is when you begin to *index data by timestamps*: .. code:: ipython3 index = pd.DatetimeIndex(['2014-07-04', '2014-08-04', '2015-07-04', '2015-08-04']) data = pd.Series([0, 1, 2, 3], index=index) data .. parsed-literal:: 2014-07-04 0 2014-08-04 1 2015-07-04 2 2015-08-04 3 dtype: int64 Now that we have this data in a ``Series``, we can make use of any of the ``Series`` indexing patterns passing values that can be coerced into dates: .. code:: ipython3 data['2014-07-04':'2015-07-04'] .. parsed-literal:: 2014-07-04 0 2014-08-04 1 2015-07-04 2 dtype: int64 .. code:: ipython3 data['2015'] # additional special date-only indexing operations .. parsed-literal:: 2015-07-04 2 2015-08-04 3 dtype: int64 Pandas Time Series Data Structures ---------------------------------- The fundamental Pandas data structures for working with time series data: - For *time stamps*, Pandas provides the ``Timestamp`` type. As mentioned before, it is essentially a replacement for Python’s native ``datetime``, but is based on the more efficient ``numpy.datetime64`` data type. The associated Index structure is ``DatetimeIndex``. - For *time Periods*, Pandas provides the ``Period`` type. This encodes a fixed-frequency interval based on ``numpy.datetime64``. The associated index structure is ``PeriodIndex``. - For *time deltas* or *durations*, Pandas provides the ``Timedelta`` type. ``Timedelta`` is a more efficient replacement for Python’s native ``datetime.timedelta`` type, and is based on ``numpy.timedelta64``. The associated index structure is ``TimedeltaIndex``. The most fundamental of these date/time objects are the ``Timestamp`` and ``DatetimeIndex`` objects. While these class objects can be invoked directly, it is more common to use the ``pd.to_datetime()`` function, which can parse a wide variety of formats. Passing a single date to ``pd.to_datetime()`` yields a ``Timestamp``; passing a series of dates by default yields a ``DatetimeIndex``: .. code:: ipython3 dates = pd.to_datetime([datetime(2015, 7, 3), '4th of July, 2015', '2015-Jul-6', '07-07-2015', '20150708']) dates .. parsed-literal:: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07', '2015-07-08'], dtype='datetime64[ns]', freq=None) Any ``DatetimeIndex`` can be converted to a ``PeriodIndex`` with the ``to_period()`` function with the addition of a frequency code; here we’ll use ``'D'`` to indicate daily frequency: .. code:: ipython3 dates.to_period('D') .. parsed-literal:: PeriodIndex(['2015-07-03', '2015-07-04', '2015-07-06', '2015-07-07', '2015-07-08'], dtype='period[D]', freq='D') .. code:: ipython3 dates - dates[0] # A ``TimedeltaIndex`` is createdwhen subtracting .. parsed-literal:: TimedeltaIndex(['0 days', '1 days', '3 days', '4 days', '5 days'], dtype='timedelta64[ns]', freq=None) Regular sequences: ``pd.date_range()`` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ To make the creation of regular date sequences more convenient, Pandas offers a few functions for this purpose: ``pd.date_range()`` for timestamps, ``pd.period_range()`` for periods, and ``pd.timedelta_range()`` for time deltas: .. code:: ipython3 pd.date_range('2015-07-03', '2015-07-10') # by default, the frequency is one day .. parsed-literal:: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'], dtype='datetime64[ns]', freq='D') .. code:: ipython3 pd.date_range('2015-07-03', periods=8) .. parsed-literal:: DatetimeIndex(['2015-07-03', '2015-07-04', '2015-07-05', '2015-07-06', '2015-07-07', '2015-07-08', '2015-07-09', '2015-07-10'], dtype='datetime64[ns]', freq='D') .. code:: ipython3 pd.date_range('2015-07-03', periods=8, freq='H') .. parsed-literal:: DatetimeIndex(['2015-07-03 00:00:00', '2015-07-03 01:00:00', '2015-07-03 02:00:00', '2015-07-03 03:00:00', '2015-07-03 04:00:00', '2015-07-03 05:00:00', '2015-07-03 06:00:00', '2015-07-03 07:00:00'], dtype='datetime64[ns]', freq='H') .. code:: ipython3 pd.period_range('2015-07', periods=8, freq='M') .. parsed-literal:: PeriodIndex(['2015-07', '2015-08', '2015-09', '2015-10', '2015-11', '2015-12', '2016-01', '2016-02'], dtype='period[M]', freq='M') .. code:: ipython3 pd.timedelta_range(0, periods=10, freq='H') .. parsed-literal:: TimedeltaIndex(['00:00:00', '01:00:00', '02:00:00', '03:00:00', '04:00:00', '05:00:00', '06:00:00', '07:00:00', '08:00:00', '09:00:00'], dtype='timedelta64[ns]', freq='H') Frequencies and Offsets ----------------------- Fundamental to these Pandas time series tools is the concept of a frequency or date offset. Just as we saw the ``D`` (day) and ``H`` (hour) codes above, we can use such codes to specify any desired frequency spacing: ===== ============ ====== ==================== Code Description Code Description ===== ============ ====== ==================== ``D`` Calendar day ``B`` Business day ``W`` Weekly ``M`` Month end ``BM`` Business month end ``Q`` Quarter end ``BQ`` Business quarter end ``A`` Year end ``BA`` Business year end ``H`` Hours ``BH`` Business hours ``T`` Minutes ``S`` Seconds ``L`` Milliseonds ``U`` Microseconds ``N`` nanoseconds ===== ============ ====== ==================== The monthly, quarterly, and annual frequencies are all marked at the end of the specified period. By adding an ``S`` suffix to any of these, they instead will be marked at the beginning: | Code \| Description \|\| Code \| Description \| \|———|————————||———|————————\| \| ``MS`` \| Month start \|\|\ ``BMS`` \| Business month start \| \| ``QS`` \| Quarter start \|\|\ ``BQS`` \| Business quarter start \| \| ``AS`` \| Year start \|\|\ ``BAS`` \| Business year start \| Additionally, you can change the month used to mark any quarterly or annual code by adding a three-letter month code as a suffix: - ``Q-JAN``, ``BQ-FEB``, ``QS-MAR``, ``BQS-APR``, etc. - ``A-JAN``, ``BA-FEB``, ``AS-MAR``, ``BAS-APR``, etc. In the same way, the split-point of the weekly frequency can be modified by adding a three-letter weekday code: - ``W-SUN``, ``W-MON``, ``W-TUE``, ``W-WED``, etc. On top of this, codes can be combined with numbers to specify other frequencies. For example, for a frequency of 2 hours 30 minutes, we can combine the hour (``H``) and minute (``T``) codes as follows: .. code:: ipython3 pd.timedelta_range(0, periods=9, freq="2H30T") .. parsed-literal:: TimedeltaIndex(['00:00:00', '02:30:00', '05:00:00', '07:30:00', '10:00:00', '12:30:00', '15:00:00', '17:30:00', '20:00:00'], dtype='timedelta64[ns]', freq='150T') All of these short codes refer to specific instances of Pandas time series offsets, which can be found in the ``pd.tseries.offsets`` module. For example, we can create a business day offset directly as follows: .. code:: ipython3 from pandas.tseries.offsets import BDay pd.date_range('2015-07-01', periods=5, freq=BDay()) .. parsed-literal:: DatetimeIndex(['2015-07-01', '2015-07-02', '2015-07-03', '2015-07-06', '2015-07-07'], dtype='datetime64[ns]', freq='B') Resampling, Shifting, and Windowing ----------------------------------- The ability to use dates and times as indices to intuitively organize and access data is an important piece of the Pandas time series tools. The benefits of indexed data in general (automatic alignment during operations, intuitive data slicing and access, etc.) still apply, and Pandas provides several additional time series-specific operations. We will take a look at a few of those here, using some stock price data as an example. Because Pandas was developed largely in a finance context, it includes some very specific tools for financial data. For example, the accompanying ``pandas-datareader`` package (installable via ``pip install pandas-datareader``), knows how to import financial data from a number of available sources, including Yahoo finance, Google Finance, and others. Download some data (**ADD A DESCRIPTION FOR IT**) .. code:: ipython3 from pandas_datareader import data goog = data.DataReader('VIXCLS', start='2004', end='2016', data_source='fred') goog.head() .. raw:: html
VIXCLS
DATE
2004-01-01 NaN
2004-01-02 18.22
2004-01-05 17.49
2004-01-06 16.73
2004-01-07 15.50
.. code:: ipython3 goog = goog['VIXCLS'] # for simplicity consider its sole column .. code:: ipython3 %matplotlib inline import matplotlib.pyplot as plt import seaborn; seaborn.set() goog.plot(); .. image:: pandas_files/pandas_548_0.png Resampling and converting frequencies ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ One common need for time series data is resampling at a higher or lower frequency. This can be done using the ``resample()`` method, or the much simpler ``asfreq()`` method. The primary difference between the two is that ``resample()`` is fundamentally a *data aggregation*, while ``asfreq()`` is fundamentally a *data selection*. Let’s compare what the two return when we down-sample the data; we will resample the data at the end of business year: .. code:: ipython3 goog.plot(alpha=0.5, style='-') goog.resample('BA').mean().plot(style=':') goog.asfreq('BA').plot(style='--'); plt.legend(['input', 'resample', 'asfreq'], loc='upper left'); .. image:: pandas_files/pandas_551_0.png Notice the difference: at each point, ``resample`` reports the *average of the previous year*, while ``asfreq`` reports the *value at the end of the year*. For up-sampling, ``resample()`` and ``asfreq()`` are largely equivalent, though resample has many more options available. In this case, the default for both methods is to leave the up-sampled points empty, that is, filled with NA values. Just as with the ``pd.fillna()`` function discussed previously, ``asfreq()`` accepts a ``method`` argument to specify how values are imputed. We resample the business day data at a daily frequency (i.e., including weekends): .. code:: ipython3 fig, ax = plt.subplots(2, sharex=True) data = goog.iloc[:10] data.asfreq('D').plot(ax=ax[0], marker='o') data.asfreq('D', method='bfill').plot(ax=ax[1], style='-o') data.asfreq('D', method='ffill').plot(ax=ax[1], style='--o') ax[1].legend(["back-fill", "forward-fill"]); .. image:: pandas_files/pandas_555_0.png The top panel is the default: non-business days are left as NA values and do not appear on the plot. The bottom panel shows the differences between two strategies for filling the gaps: forward-filling and backward-filling. Time-shifts ~~~~~~~~~~~ Another common time series-specific operation is shifting of data in time. Pandas has two closely related methods for computing this: ``shift()`` and ``tshift()`` In short, the difference between them is that ``shift()`` *shifts the data*, while ``tshift()`` *shifts the index*. In both cases, the shift is specified in multiples of the frequency. Here we will both ``shift()`` and ``tshift()`` by 900 days; .. code:: ipython3 fig, ax = plt.subplots(3, sharey=True) # apply a frequency to the data goog = goog.asfreq('D', method='pad') goog.plot(ax=ax[0]) goog.shift(900).plot(ax=ax[1]) goog.tshift(900).plot(ax=ax[2]) # legends and annotations local_max = pd.to_datetime('2007-11-05') offset = pd.Timedelta(900, 'D') ax[0].legend(['input'], loc=2) ax[0].get_xticklabels()[2].set(weight='heavy', color='red') ax[0].axvline(local_max, alpha=0.3, color='red') ax[1].legend(['shift(900)'], loc=2) ax[1].get_xticklabels()[2].set(weight='heavy', color='red') ax[1].axvline(local_max + offset, alpha=0.3, color='red') ax[2].legend(['tshift(900)'], loc=2) ax[2].get_xticklabels()[1].set(weight='heavy', color='red') ax[2].axvline(local_max + offset, alpha=0.3, color='red'); .. image:: pandas_files/pandas_558_0.png We see here that ``shift(900)`` shifts the *data* by 900 days, pushing some of it off the end of the graph (and leaving NA values at the other end), while ``tshift(900)`` shifts the *index values* by 900 days. A common context for this type of shift is in computing differences over time. For example, we use shifted values to compute the one-year return on investment for Google stock over the course of the dataset: .. code:: ipython3 ROI = 100 * (goog.tshift(-365) / goog - 1) ROI.plot() plt.ylabel('% Return on Investment'); .. image:: pandas_files/pandas_560_0.png This helps us to see the overall trend in Google stock: thus far, the most profitable times to invest in Google have been (unsurprisingly, in retrospect) shortly after its IPO, and in the middle of the 2009 recession. Rolling windows ~~~~~~~~~~~~~~~ Rolling statistics are a third type of time series-specific operation implemented by Pandas. These can be accomplished via the ``rolling()`` attribute of ``Series`` and ``DataFrame`` objects, which returns a view similar to what we saw with the ``groupby`` operation (see `Aggregation and Grouping <03.08-Aggregation-and-Grouping.ipynb>`__). This rolling view makes available a number of aggregation operations by default. For example, here is the one-year centered rolling mean and standard deviation of the Google stock prices: .. code:: ipython3 rolling = goog.rolling(40, center=True) data = pd.DataFrame({'input': goog, 'one-year rolling_mean': rolling.mean(), 'one-year rolling_std': rolling.std()}) ax = data.plot(style=['-', '--', ':']) ax.lines[0].set_alpha(0.3) .. image:: pandas_files/pandas_564_0.png As with group-by operations, the ``aggregate()`` and ``apply()`` methods can be used for custom rolling computations. Example: Visualizing Seattle Bicycle Counts ------------------------------------------- As a more involved example of working with some time series data, let’s take a look at bicycle counts on Seattle’s `Fremont Bridge `__. This data comes from an automated bicycle counter, installed in late 2012, which has inductive sensors on the east and west sidewalks of the bridge. The hourly bicycle counts can be downloaded from http://data.seattle.gov/; here is the `direct link to the dataset `__. As of summer 2016, the CSV can be downloaded as follows: .. code:: ipython3 !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD .. parsed-literal:: % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 2024k 0 2024k 0 0 331k 0 --:--:-- 0:00:06 --:--:-- 462k Once this dataset is downloaded, we can use Pandas to read the CSV output into a ``DataFrame``. We will specify that we want the Date as an index, and we want these dates to be automatically parsed: .. code:: ipython3 data = pd.read_csv('data/FremontBridge.csv', index_col='Date', parse_dates=True) data.head() .. raw:: html
Fremont Bridge Total Fremont Bridge East Sidewalk Fremont Bridge West Sidewalk
Date
2012-10-03 00:00:00 13.0 4.0 9.0
2012-10-03 01:00:00 10.0 4.0 6.0
2012-10-03 02:00:00 2.0 1.0 1.0
2012-10-03 03:00:00 5.0 2.0 3.0
2012-10-03 04:00:00 7.0 6.0 1.0
We’ll further process this dataset by shortening the column names and adding a “Total” column: .. code:: ipython3 data['Total'] = data["Fremont Bridge Total"] data.dropna().describe() # have a look at summary statistics .. raw:: html
Fremont Bridge Total Fremont Bridge East Sidewalk Fremont Bridge West Sidewalk Total
count 64934.000000 64934.000000 64934.000000 64934.000000
mean 113.805033 51.976191 61.828842 113.805033
std 145.235402 67.013247 90.605138 145.235402
min 0.000000 0.000000 0.000000 0.000000
25% 14.000000 6.000000 7.000000 14.000000
50% 61.000000 28.000000 30.000000 61.000000
75% 148.000000 70.000000 74.000000 148.000000
max 1097.000000 698.000000 850.000000 1097.000000
Visualizing the data ~~~~~~~~~~~~~~~~~~~~ We can gain some insight into the dataset by visualizing it: .. code:: ipython3 %matplotlib inline import seaborn; seaborn.set() .. code:: ipython3 data.plot() plt.ylabel('Hourly Bicycle Count'); .. image:: pandas_files/pandas_574_0.png The ~25,000 hourly samples are far too dense for us to make much sense of. We can gain more insight by resampling the data to a coarser grid: .. code:: ipython3 weekly = data.resample('W').sum() weekly.plot(style=[':', '--', '-']) plt.ylabel('Weekly bicycle count'); .. image:: pandas_files/pandas_576_0.png This shows us some interesting seasonal trends: as you might expect, people bicycle more in the summer than in the winter, and even within a particular season the bicycle use varies from week to week (likely dependent on weather. Another way that comes in handy for aggregating the data is to use a rolling mean, utilizing the ``pd.rolling_mean()`` function. Here we’ll do a 30 day rolling mean of our data, making sure to center the window: .. code:: ipython3 daily = data.resample('D').sum() daily.rolling(30, center=True).sum().plot(style=[':', '--', '-']) plt.ylabel('mean hourly count'); .. image:: pandas_files/pandas_579_0.png The jaggedness of the result is due to the hard cutoff of the window. We can get a smoother version of a rolling mean using a window function–for example, a Gaussian window. The following code specifies both the width of the window (we chose 50 days) and the width of the Gaussian within the window (we chose 10 days): .. code:: ipython3 daily.rolling(50, center=True, win_type='gaussian').sum(std=10).plot(style=[':', '--', '-']); .. image:: pandas_files/pandas_582_0.png Digging into the data ~~~~~~~~~~~~~~~~~~~~~ While these smoothed data views are useful to get an idea of the general trend in the data, they hide much of the interesting structure. For example, we might want to look at the average traffic as a function of the time of day; we do this by grouping: .. code:: ipython3 by_time = data.groupby(data.index.time).mean() hourly_ticks = 4 * 60 * 60 * np.arange(6) by_time.plot(xticks=hourly_ticks, style=[':', '--', '-']); .. image:: pandas_files/pandas_584_0.png The hourly traffic is a strongly bimodal distribution, with peaks around 8:00 in the morning and 5:00 in the evening. This is likely evidence of a strong component of commuter traffic crossing the bridge. This is further evidenced by the differences between the western sidewalk (generally used going toward downtown Seattle), which peaks more strongly in the morning, and the eastern sidewalk (generally used going away from downtown Seattle), which peaks more strongly in the evening. We also might be curious about how things change based on the day of the week. Again, we can do this with a simple groupby: .. code:: ipython3 by_weekday = data.groupby(data.index.dayofweek).mean() by_weekday.index = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'] by_weekday.plot(style=[':', '--', '-']); .. image:: pandas_files/pandas_587_0.png This shows a strong distinction between weekday and weekend totals, with around twice as many average riders crossing the bridge on Monday through Friday than on Saturday and Sunday. With this in mind, let’s do a compound GroupBy and look at the hourly trend on weekdays versus weekends. We’ll start by grouping by both a flag marking the weekend, and the time of day: .. code:: ipython3 weekend = np.where(data.index.weekday < 5, 'Weekday', 'Weekend') by_time = data.groupby([weekend, data.index.time]).mean() .. code:: ipython3 import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2, figsize=(14, 5)) by_time.loc['Weekday'].plot(ax=ax[0], title='Weekdays', xticks=hourly_ticks, style=[':', '--', '-']) by_time.loc['Weekend'].plot(ax=ax[1], title='Weekends', xticks=hourly_ticks, style=[':', '--', '-']); .. image:: pandas_files/pandas_591_0.png The result is very interesting: we see a bimodal commute pattern during the work week, and a unimodal recreational pattern during the weekends.